pythonarma模型t检验_【描述时序】趋势、季节和随机性

本文介绍了时间序列分析中的ARMA模型和趋势分解定理,包括Wold分解和Crammer分解,讨论了趋势拟合法如直线、指数、幂函数等模型,并讲述了移动平均和指数平滑等平滑方法,以及季节性模型的处理方法。
摘要由CSDN通过智能技术生成

先看此知识体系:

%E6%8F%8F%E8%BF%B0%E6%97%B6%E5%BA%8F.png

1. 分解

1.1 分解定理

wold分解定理

(1938)

任何一个离散平稳过程$x_t$都可以分解为两个不相关的平稳序列之和,其中一个为确定性的,另一个为随机性的。

$x_t=V_t+\xi_t$

其中,

$V_t$是确定性序列

$\xi_t=\sum\limits_{j=0}^\infty \phi_j \varepsilon_{t-j}$是随机序列

$\phi_0=1,\sum_{j=0}^\infty \phi_j^2

$\varepsilon_t\sim N(0,\sigma_\varepsilon^2)$,也就是白噪声序列

$E(V_t,\varepsilon_s)=0,\forall t\neq s$

下面定义什么事 确定性序列 和 随机性序列

$y_t=a_0+a_1y_{t-q}+a_2y_{t-q-1}+…+v_t$

$v_t$是残差,定义$\tau_q^2=Var(v_t)$

如果$\lim\limits_{q\to\infty}\tau_q^2=0$,那么$y_t$叫做确定性序列

如果$\lim\limits_{q\to\infty

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值