h5 换脸 php,【部分原创】python实现视频内的face swap(换脸)

1.准备工作,按博主的环境为准

Python 3.5

Opencv 3

Tensorflow 1.3.1

Keras 2

cudnn和CUDA,如果你的GPU足够厉害并且支持的话,可以选择安装

那就先安装起来,有兴趣的朋友给我个暗示,好让我有动力写下去,想实现整套的功能还是有点复杂的

第一部分,数据采集,及视频内人物脸

import cv2

save_path = 'your save path'

cascade = cv2.CascadeClassifier('haarcascade_frontalface_alt.xml path')

cap = cv2.VideoCapture('your video path')

i = 0

while True:

ret,frame = cap.read()

gray = cv2.cvtColor(frame,cv2.COLOR_BGR2GRAY)

rect = cascade.detectMultiScale(gray,scaleFactor=1.3,minNeighbors=9,minSize=(50,50),flags = cv2.CASCADE_SCALE_IMAGE)

print ("rect",rect)

if not rect is ():

for x,y,z,w in rect:

roiImg = frame[y:y+w,x:x+z]

cv2.imwrite(save_path+str(i)+'.jpg',roiImg)

cv2.rectangle(frame,(x,y),(x+z,y+w),(0,0,255),2)

i +=1

cv2.imshow('frame',frame)

if cv2.waitKey(1) &0xFF == ord('q'):

break

cap.release()

cv2.destroyAllWindows()

第二部分,国外大神开源代码,用于模型训练

import cv2

import numpy

from utils import get_image_paths, load_images, stack_images

from training_data import get_training_data

from model import autoencoder_A

from model import autoencoder_B

from model import encoder, decoder_A, decoder_B

try:

encoder .load_weights( "models/encoder.h5" )

decoder_A.load_weights( "models/decoder_A.h5" )

decoder_B.load_weights( "models/decoder_B.h5" )

except:

pass

def save_model_weights():

encoder .save_weights( "models/encoder.h5" )

decoder_A.save_weights( "models/decoder_A.h5" )

decoder_B.save_weights( "models/decoder_B.h5" )

print( "save model weights" )

images_A = get_image_paths( "data/trump" )

images_B = get_image_paths( "data/cage" )

images_A = load_images( images_A ) / 255.0

images_B = load_images( images_B ) / 255.0

images_A += images_B.mean( axis=(0,1,2) ) - images_A.mean( axis=(0,1,2) )

print( "press 'q' to stop training and save model" )

for epoch in range(1000000):

batch_size = 64

warped_A, target_A = get_training_data( images_A, batch_size )

warped_B, target_B = get_training_data( images_B, batch_size )

loss_A = autoencoder_A.train_on_batch( warped_A, target_A )

loss_B = autoencoder_B.train_on_batch( warped_B, target_B )

print( loss_A, loss_B )

if epoch % 100 == 0:

save_model_weights()

test_A = target_A[0:14]

test_B = target_B[0:14]

figure_A = numpy.stack([

test_A,

autoencoder_A.predict( test_A ),

autoencoder_B.predict( test_A ),

], axis=1 )

figure_B = numpy.stack([

test_B,

autoencoder_B.predict( test_B ),

autoencoder_A.predict( test_B ),

], axis=1 )

figure = numpy.concatenate( [ figure_A, figure_B ], axis=0 )

figure = figure.reshape( (4,7) + figure.shape[1:] )

figure = stack_images( figure )

figure = numpy.clip( figure * 255, 0, 255 ).astype('uint8')

cv2.imshow( "", figure )

key = cv2.waitKey(1)

if key == ord('q'):

save_model_weights()

exit()

第三部分,国外大神开源代码,人脸输出

import cv2

import numpy

from pathlib import Path

from utils import get_image_paths

from model import autoencoder_A

from model import autoencoder_B

from model import encoder, decoder_A, decoder_B

encoder .load_weights( "models/encoder.h5" )

decoder_A.load_weights( "models/decoder_A.h5" )

decoder_B.load_weights( "models/decoder_B.h5" )

images_A = get_image_paths( "data/trump" )

images_B = get_image_paths( "data/cage" )

def convert_one_image( autoencoder, image ):

assert image.shape == (256,256,3)

crop = slice(48,208)

face = image[crop,crop]

face = cv2.resize( face, (64,64) )

face = numpy.expand_dims( face, 0 )

new_face = autoencoder.predict( face / 255.0 )[0]

new_face = numpy.clip( new_face * 255, 0, 255 ).astype( image.dtype )

new_face = cv2.resize( new_face, (160,160) )

new_image = image.copy()

new_image[crop,crop] = new_face

return new_image

output_dir = Path( 'output' )

output_dir.mkdir( parents=True, exist_ok=True )

for fn in images_A:

image = cv2.imread(fn)

new_image = convert_one_image( autoencoder_B, image )

output_file = output_dir / Path(fn).name

cv2.imwrite( str(output_file), new_image )

第四部分,人脸替换

#import necessary libraries

import cv2

import glob as gb

# import numpy

#capture video from the webcam

cap = cv2.VideoCapture('your video path')

fourcc = cv2.VideoWriter_fourcc(*'XVID')

out = cv2.VideoWriter('your output video path', fourcc, 20.0, (1920, 1080))

#load the face finder

face_cascade = cv2.CascadeClassifier('haarcascade_frontalface_alt.xml path')

#load the face that will be swapped in

img_path = gb.glob("your image path")

#start loop

for path in img_path:

face_img = cv2.imread(path)

while True:

ret, img = cap.read() # read image

gray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

faces = face_cascade.detectMultiScale(gray, 1.3, 3) # find faces

# for all the faces found in the frame

for (x, y, w, h) in faces:

# resize and blend the face to be swapped in

face = cv2.resize(face_img, (h, w), interpolation=cv2.INTER_CUBIC)

face = cv2.addWeighted(img[y:y + h, x:x + w], .5, face, .5, 1)

# swap faces

img[y:y + h, x:x + w] = face

out.write(img)

# show the image

cv2.imshow('img', img)

key = cv2.waitKey(1)

if key == ord('q'):

exit()

cap.release()

cv2.destroyAllWindows()

最后放一张训练一小时后的视频截图,用的是尼古拉斯凯奇的脸

8e8b1896e2961090afe254260e0beb1a.png

【原创】python实现视频内的face swap(换脸)

1.准备工作,按博主的环境为准 Python 3.5 Opencv 3 Tensorflow 1.3.1 Keras 2 cudnn和CUDA,如果你的GPU足够厉害并且支持的话,可以选择安装 那就先 ...

[原创]使用python对视频/音频文件进行详细信息采集,并进行去重操作

[原创]使用python对视频/音频文件进行详细信息采集,并进行去重操作 转载请注明出处 一.关于为什么用pymediainfo以及pymediainfo的安装 使用python对视频/音频文件进行详 ...

Python的常用内置函数介绍

Python的常用内置函数介绍 作者:尹正杰 版权声明:原创作品,谢绝转载!否则将追究法律责任. 一.取绝对值(abs) #!/usr/bin/env python #_*_coding:utf-8_ ...

零基础快速掌握Python系统管理视频课程【猎豹网校】

点击了解更多Python课程>>> 零基础快速掌握Python系统管理视频课程[猎豹网校] 课程目录 01.第01章 Python简介.mp4 02.第02章 IPython基础.m ...

Python学习教程(Python学习视频_Python学些路线):Day06 函数和模块的使用

Python学习教程(Python学习视频_Python学些路线):函数和模块的使用 在讲解本章节的内容之前,我们先来研究一道数学题,请说出下面的方程有多少组正整数解. $$x_1 + x_2 + x ...

[Python] 将视频转成ASCII符号形式、生成GIF图片

一.简要说明 简述:本文主要展示将视频转成ASCII符号形式展示出来,带音频. 运行环境:Win10/Python3.5. 主要模块: PIL.numpy.shutil. [PIL]: 图像处理 [n ...

python常用数据类型内置方法介绍

熟练掌握python常用数据类型内置方法是每个初学者必须具备的内功. 下面介绍了python常用的集中数据类型及其方法,点开源代码,其中对主要方法都进行了中文注释. 一.整型 a = 100 a.xx ...

python计算非内置数据类型占用内存

getsizeof的局限 python非内置数据类型的对象无法用sys.getsizeof()获得真实的大小,例: import networkx as nx import sys G = nx.Gr ...

Python远程视频监控

Python远程视频监控程序   老板由于事务繁忙无法经常亲临教研室,于是让我搞个监控系统,让他在办公室就能看到教研室来了多少人.o(>﹏

随机推荐

mysql关联表的复制

1. 复制被参照的表: CREATE TABLE clone_product_1 LIKE product_1; INSERT INTO clone_product_1 SELECT * FROM p ...

Web API数据传输加密

http://www.cnblogs.com/wuhuacong/p/4620300.html Web API应用架构设计分析(2) 在上篇随笔, ...

类型转换辅助工具类TypeCaseHelper

package org.sakaiproject.util; import java.math.BigDecimal; import java.sql.Date; import java.sql.Ti ...

仿souhu页面设计

仿搜狐页面设计 Html页面设计代码: ...

【ASP.NET+MVC4+Web+编程】读书笔记

模型:数据和业务逻辑 视图:展示 控制器:接收视图输入数据,通过模型层业务逻辑处理后 返回给视图 分离关注点(模型 视图 控制器).惯例优先原则 browser-->routing-->c ...

CentOS IP DNS设置

1.CentOS 修改DNS 修改对应网卡的DNS的配置文件 # vi /etc/resolv.conf 修改以下内容 nameserver 8.8.8.8 #google域名服务器 nameserv ...

centos 下安装 Jre 及 selenium

下载软件包 下载链接: jre-7u55-linux-i586.tar.gz : http://pan.baidu.com/s/14cjds selenium-server-standalone-2. ...

前端框架Bootstrap - 快速搭建网站

Bootstrap简介         Bootstrap是Twitter推出的一个开源的用于前端开发的工具包.是一个CSS/HTML/JavaScript框架.Bootstrap是基于HTML5和C ...

Windows Server 2016-清理残留域控信息

本章紧接上文,当生产环境中域控出现问题无法修复以后,一方面我们需要考虑抢夺FSMO角色,另一方面我们需要考虑的问题是清理当前域控的残留信息,以防止残留数据信息导致用户验证或者解析异常等问题.本章讲到如 ...

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值