
一、比的认识
1、生活中两个量之间存在倍比关系。
2、两个数相除,又叫作这个两个数的比。
3、读写法:
在两个数的比中,中间的是比号,比号前面的数是比的前项,比号后面的数是比的后项。比的前项、后项可以是分数、小数、整数或具体的数量,2:3 , 0.3:0.2, 30米:20千米 都是比.
连比:三个或三个以上的数的关系也可以用比来表示,例如:一个长方体的长、宽、高的比是3:4:5,这样的比叫作“连比”。
4、以下三种“比”的不同:
(1)体育比赛中的2比0,这里的“比”只是记录比赛双方得分的一种形式,表示一方得2分,另一方得0分。
(2)20比15多5。这里的“比”是一种加减关系。
男生人数4人,女生人数是3人,男生人数与女生人数的比是4:3,这里的比就是我们数学中要学的比,表示的是男生与女生人数的倍比关系。它表示男生人数是(接图)

(3)甘蔗汁与 水体积 比 是 1:2 水与甘蔗汁的体积比 是 2:1。
(4)“路程”与“时间”的比的“比值”表示的是“速度”。比值越大,速度越快,比值越小,速度越慢。
“总价”与“数量”的比 的“比值”表示的是“单价”。比值越大,商品越贵,比值越小,商品越便宜。
7、“比、分数、除法”的关系
比的前项相当于分子,被除数,比号相当于分数线,除号,比的后项相当于分母,除数。
比值相当于分数值、商。

分子 前项 被除数
分数线 比号 除号
分母 后项 除数 (不0)
分数的值 比值 商
8、(1)比的基本性质:比的前项或后项同时乘或除以相同的数(0除外),比值大小不变,这叫作“比的基本性质”。(比)
(2)商不变规律:被除数与除数同时乘或除以相同的数(0除外),比值大小不变,这叫作“商不变规律”。(除法)
(3)分数的基本性质:分子与分母同时乘或除以相同的数(0除外),分数的大小不变,这叫作“分数的基本性质”。(分数)
9、把一个比 化成 最简 整数比 的过程叫“化简比”或“比的化简”。
比的化简的结果叫“最简比” 用a:b形式表示。最简比的前项与后项的数是互质数,只有公因数1。
10、比的化简:
(1)“整数比”的化简:
“整数比”改写成“分数”,化成最简分数,最后改写成“比的形式” a:b。
(2)“小数比”的化简:
移动小数点,把“小数比”改写成“整数比”,再按“整数比”化简的方法“化简”。
(3)“分数比”的化简
前项除以后项,商用“最简分数”表示,最后改写成“比的形式” a:b。
11、“比值”与“比的化简”的区别

12、比的应用:
(1)按一定的比进行分配的意义:在工农业生产和日常生活中,常常需要把一个数量按照一定的比进行分配,这种分配方法通常叫作:按一定的比进行分配。
(2)按一定的比进行分配问题的解法:
方法一:分数法:先求出总份数,再找出部分量占总量的几分之几,最后用分数乘法计算。
方法二:平均法:先求出总份数,再求出每一份的数量,最后用每一份的数量乘部分量对应的份数。
(3)按比分配的应用题:
求“每一份的数量”:
做比的应用题,关键还是找出每一份的数量
每一份的数量=总量÷总份数
每一份的数量=部分量÷部分量对应的份数
每一份的数量=前后项相差的数量÷前后项相差的份数



二、比例的认识
1、比例的意义:表示两个比相等的式子叫作比例。
2、比例各部分的名称:组成比例的四个数叫作比例的项,其中两端的两项叫作外项,中间的两项叫作内项。
3、比例的基本性质:在比例里,两个外项的积等于两个内项的积。
4、判断两个比是否成比例的方法:
(1)计算两个比的比值,看是否相等。(2)利用比例的基本性质,外项积等于内项积。
三、比例尺

3、比例尺的相关公式
(1)图上距离÷实际距离=比例尺(根据比例尺写出图上距离和实际距离的比,统一单位,再化简比。)
(2)图上距离÷比例尺=实际距离
(3)实际距离×比例尺=图上距离
4、根据比例尺画图的方法:根据方向、角度、距离,用量角器画图
(1)观测点与量角器中心重合(2)第一方向与0刻度线重合(3)根据第二方向确定旋转的方向。(4)标点、连线。(画线段,写角度、距离,地方名称。)(5)标比例尺
5、解比例:在比例中,如果已知比例中的三项,都可以求出这个比例中的另外一个未知项。求比例中未知项的过程,叫作:解比例。解比例是解方程中的一种。
6、解比例的方法:根据比例的基本性质, 先把比例转化成外项的积与内项的积相等的形式,也就是方程,再解方程,求出未知项的值。
7、图形的放大与缩小:
(1)图形按一定的比放大或缩小,要使放大或缩小前后图形的对应的线段长度的比相等。
(2)按一个图形放大或缩小后所得到的图形与原图相比,形状相同,大小不同。
(3)按一定比放大图形,比的前项的数字更大,比的后项的数字更小(4:1)。按一定比缩小图形,比的前项的数字更小,比的后项的数字更大。(1:4)
(4)公式:放大前的长度×比例尺=放大后的长度 缩小前的长度×比例尺=缩小后的长度
(5)按一定的比把图形放大或缩小时,放大或缩小的是图形的相关线段的长度,而不是图形的面积。所以,图形的放大或缩小是用图形每条边的长度与乘除比例尺,一般不用面积或体积去乘除比例尺。
(6)按一定比放大或缩小图形,应该考虑图形的横、竖、斜线的变化。
三、正反比例
1、生活中的存在着许多有关系的变化的量。这些变化的量存在着相互依存的关系,一个量变化,另一个量也随着变化,一个量的值确定,另一个量的值也随之确定。

4、正、反比例图象:正比例图象是一条直线,反比例图象是一条曲线。
5、判断成正比例与反比例的方法:(1)找变量,确定两个量是相关联的量。(2)看定量:看两种量之间的关系是比值(商)一定,还是积一定。
6、用正比例、反比例解决实际问题步骤:
(1)分析数量关系,判断这个应用题是成什么比例。
(2)设未知数为X。
(3)找等量关系:如果是成正比例,就按列比例的方程,如果成反比例,就列乘法的方程。
(4)解方程,检验并写答。
