java fp-growth 算法包_GitHub - baiyyang/FP-growth: Java实现FP-growth算法

FP-growth

该项目是FP-growth算法的实现,该算法用于快速的寻找关联规则和频繁项集,只需要扫描两次数据库,设计很精妙。

其中算法的伪代码给出如下:

一、FP-Tree构造算法

输入:事务数据集 D,最小支持度阈值 min_sup

输出:FP-Tree

(1)   扫描事务数据集 D 一次,获得频繁项的集合 F 和其中每个频繁项的支持度。对 F 中的所有频繁项按其支持度进行降序排序,结果为频繁项表 L ;

(2)   创建一个 FP-Tree 的根节点 T,标记为“null”;

(3)   for 事务数据集 D 中每个事务 Trans do

(4)     对 Trans 中的所有频繁项按照 L 中的次序排序;

(5)     对排序后的频繁项表以 [p|P] 格式表示,其中 p 是第一个元素,而 P 是频繁项表中除去 p 后剩余元素组成的项表;

(6)     调用函数 insert_tree( [p|P], T );

(7)   end for

insert_tree( [p|P], root)

(1)   if root 有孩子节点 N and N.item-name=p.item-name then

(2)     N.count++;

(3)   Else

(4)     创建新节点 N;

(5)     N.item-name=p.item-name;

(6)     N.count++;

(7)     p.parent=root;

(8)     将 N.node-link 指向树中与它同项目名的节点;

(9)   end if

(10)  if P 非空 then

(11)    把 P 的第一项目赋值给 p,并把它从 P 中删除;

(12)    递归调用 insert_tree( [p|P], N);

(13)  end if

二、FP-Growth(FP-Tree, α);

输入:已经构造好的 FP-Tree,项集 α(初值为空),最小支持度 min_sup;

输出:事务数据集 D 中的频繁项集 L;

(1)   L 初值为空

(2)   if Tree 只包含单个路径 P then

(3)     for 路径 P 中节点的每个组合(记为 β) do

(4)       产生项目集 α∪β,其支持度 support 等于 β 中节点的最小支持度数;

(5)       return L = L ∪ 支持度数大于 min_sup 的项目集 β∪α

(6)   else    //包含多个路径

(7)     for Tree 的头表中的每个频繁项 αf do

(8)       产生一个项目集 β = αf∪α,其支持度等于 αf 的支持度;

(9)       构造 β 的条件模式基 B,并根据该条件模式基 B 构造 β 的条件 FP- 树 Treeβ;

(10)       if Treeβ≠Φ then

(11)         递归调用 FP-Growth(Treeβ, β);

(12)       end if

(13)     end for

(14)  end if

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值