抛物线中四边形面积最大值_中考水平宽铅垂高法求面积最大值(带答案).doc

这篇博客探讨了二次函数与几何图形的交汇问题,包括如何通过已知的交点坐标求解抛物线的解析式,寻找使特定三角形周长最小的点,以及在抛物线上确定使三角形面积最大的点。通过一系列数学推理和几何性质,得出了解决这些问题的具体步骤和解答。此外,还涉及到了等腰三角形和对称轴的性质在求解过程中的关键作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

.

.

1.如图,抛物线与x轴交与A(1,0),B(- 3,0)两点,

(1)求该抛物线的解析式;

(2)设(1)中的抛物线交y轴与C点,在该抛物线的对称轴上是否存在点Q,使得△QAC的周长最小?若存在,求出Q点的坐标;若不存在,请说明理由.

(3)在(1)中的抛物线上的第二象限上是否存在一点P,使△PBC的面积最大?,若存在,求出点P的坐标及△PBC的面积最大值.若没有,请说明理由.(12杭州模拟)

解:(1)将A(1,0),B(-3,0)代中得

∴抛物线解析式为:

(2)存在

理由如下:由题知A、B两点关于抛物线的对称轴对称

∴直线BC与的交点即为Q点, 此时△AQC周长最小

∴C的坐标为:(0,3)

直线BC解析式为:

Q点坐标即为的解

∴Q(-1,2)

(3)答:存在。

理由如下:

设P点

若有最大值,则就最大,

当时,最大值=

∴最大=

当时,

∴点P坐标为

1.备用答案:

解:(1) 将(–3,1),(0,–2)代入得:

∴ 抛物线的解析式为:

(2) 过B作BE⊥x轴于E,则E(–3,0),易证△BEC≌△COA

∴ BE = AO = 2 CO = 1

∴ C(–1,0)

(3) 延长BC到P,使CP = BC,连结AP,

则△ACP为以AC为直角边的等腰直角三角形

过P作PF⊥x轴于F,易证△BEC≌△DFC

∴ CF = CE = 2 PF= BE = 1

∴ P(1,– 1)

将(1,– 1)代入抛物线的解析式满足

若,AC = AP

则四边形ABCP为平行四边形

过P作PG⊥y轴于G,易证△PGA≌△CEB

∴ PG = 2 AG = 1

∴ P(2,1)在抛物线上

∴ 存在P(1,– 1),(2,1)满足条件

2.(本小题满分12分)

如图①, 已知抛物线(a≠0)与轴交于点A(1,0)和点B (-3,0),与y轴交于点C.

(1) 求抛物线的解析式;

(2) 设抛物线的对称轴与轴交于点N ,问在对称轴上是否存在点P,使△CNP为等腰三角形?若存在,请直接写出所有符合条件的点P的坐标;若不存在,请说明理由.

(3) 如图②,若点E为第三象限抛物线上一动点,连接BE、CE,求四边形BOCE面积的最大值,并求此时E点的坐标.08

图①

图②

(1) 设每年的平均增长率为x,144(1+x)=225,x=1/4 或 x=-9/4 (舍去) (2)

225×(1+1/4)=281 (2)

设可建室内车位个,露天车位b 个,

3a≤b≤4.5a

6000a+2000b=250000 ≤ a≤ (2)

a=17,b=74; a=18,b=71; a=19,b=68; a=20,b=65 (4)

24.(本小题满分12分)

如图①, 已知抛物线(a≠0)与轴交于点A(1,0)和点B (-3,0),与y轴交于点C.

(1) y=x+2x-3 (2)

(2)P(-1,),P(-1,- ),P(-1,-6),P(-1,-) (4)

(3) S=1/2×3×(-x-2x+3)+ 1/2×3×(-x)

S=-3/2(x+3/2)+63/8

X=-3/2 , S=63/8 (5)

E(-3/2,-15/4) (1)

3.(本小题满分12分)(原创)

_M_A_B_O_

_

M

_

A

_

B

_

O

_

x

_

y

当M为抛物线的顶点时,求△OMB的面积;

当点M在抛物线上,△OMB的面积为10时,求点M的坐标;

当点M在直线AB的下方且在抛物线对称轴的右侧,M运动到何处时,△OMB的面积最大;09

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值