9和1,真淘气
7、3、8、2也调皮
吹6升4
(6象哨子,4象小旗)
小手小手真伶俐
(让生摇动双手,象把10分成5和5)
乘法口诀求商歌 (一)想乘法,算除法, 口诀缺啥就商啥。 (二)用乘法口诀求商, 先把口诀仔细想: 如果缺少哪个数, 它就是求得的商。 认识时间的儿歌 时针走过数字几, 表示时间几时多。 要问多了多少分, 请你仔细看分针。 对于某些减法的简便运算 多加就减, 少加再加; 多减就加, 少减再减。 结合律不算难, 两数结合可先算。 《植树问题》 小朋友,张开手, 五只手指人人有, 手指之间几个空, 请你仔细瞅一瞅。 商中间或末位有0的除法 我是0,本事大, 除法运算显神通。 不够商1我来补。 有了空位我就坐。 别人要想把我除, 常胜将军总是我。 除的意义 到“除”,圈一圈, “除”字前面是除数, “除”字后面被除数, 位置交换别忘了。 四则运算顺序 括号括号抢第一, 乘法、除法排第二, 最后才算加减法, 谁在前面先算谁。 连续退位的减法 看到0,向前走, 看看哪一位上有。 借走了往后走, 0上有点看作9。 拍手歌 我说一,一一一,一张纸来一只笔, 学习数学做练习,都要用到纸和笔。 我说二,二二二,身上长着多少二, 左左右右数一数,眼睛、手脚和耳朵。 我说三,三三三,鲜红领巾胸前戴, 三个角,三条边,我们人人都喜爱。 我说四,四四四,眼前一张长桌子, 四个角,四条边,用它读书和写字。 我说五,五五五,五角星,亮晶晶, 国旗上有五颗星,我是那颗小星星。 我说六,六六六,六一节啊真快乐, 唱歌跳舞做游戏,祖国花朵真幸福。 我说七,七七七,一个星期有七天, 星期天,不上学,做个妈妈的好帮手。 我说八,八八八,慰问军属老大妈, 你扫地,我擦窗,大妈对我笑哈哈。 我说九,九九九,九月十日教师节, 尊敬老师有礼貌,人人夸我好宝宝。 我说十,十十十,两只手上有手指, 十个手指用处大,学习雷锋做好事。 时针和分针 小小表盘圆又圆, 时针分针跑圈圈。 分针长,时针短, 一个快来一个慢。 分针跑完一满圈, 时针刚跑一小段。 珠算读写数 小小珠算真神奇, 读数写数最容易。 四位一级是关键, 读写都从高位起。 级前中0读一个, 级末有0不读起。 亿级万级仿个级, 读完后面加单位。 一级一级往下写, 珠不靠梁0占位。 多位数的大小比较 多位数大小看位数, 位数多的数就大; 位数相同看高位, 高位数大数就大。 年、月、日 一、三、五、七、八、十、腊, 31天总是大。 四、六、九、十一月, 30天永不差。 二月份,最特殊,二八、二九来变化。 闰年它就二十九,平年它就二十八。 4除年号有余平,整百年号划双0。 记时方法有两种,二十四时和普通。 时间单位排好队,最大单位是世纪。 1世纪,100年; 1年等于多少天?平年365,闰年366。 1小时,60分,1分等于60秒。 年、月、日,时、分、秒, 相临进率要记好。 分数大小的比较 分数大小的比较, 分子、分母要记好。 分母相同看分子, 分子大的分数大; 分子相同看分母, 分母大的分数小。 整数加法法则 整数加法有规律,相同数位要对齐。 和不满十落原位,满十上位要进一。 凑十余数落下来,加到哪位落哪位。 进位加数加一起,结果不差半分厘。 整数减法法则 整数减法有规律,相同数位要对齐。 大减小时落下差,小减大时去借位。 借一来十减后加,加减结果落原位, 连续借位要细心,借走剩几要牢记。 整数乘法法则 a.一位数乘法法则 整数乘法低位起,一位数乘法一次积。 个位数乘得若干一,积的末位对个位。 计算准确对好位,乘法口诀是根据。 b.两位数乘法法则 整数乘法低位起,两位数乘法两次积。 个位数乘得若干一,积的末位对个位。 十位数乘得若干十,积的末位对十位。 计算准确对好位,两次乘积加一起。 c.多位数乘法法则 整数乘法低位起,几位数乘法几次积。 个位数乘得若干一,积的末位对个位。 十位数乘得若干十,积的末位对十位。 百位数乘得若干百,积的末位对百位 计算准确对好位,几次乘积加一起。 d. 因数末尾有0的乘法法则 因数末尾若有0,写在后面先不乘, 乘完积补上0,有几个0写几个0。 整数除法法则 a.除数是一位数的除法法则 整数除法高位起。除数一位看一位。 一位不够看二位,除到哪位商哪位。 余数要比除数小,不够商一零占位。 b. 除数是两位数的除法法则 整数除法高位起。除数两位看两位。 两位不够看三位,除到哪位商哪位。 余数要比除数小,不够商一零占位。 c.多位数除法法则 整数除法高位起。除数几位看几位。 这位不够看下位,除到哪位商哪位。 余数要比除数小,不够商一零占位。 d.商不变的性质 被除数、除数同时乘,乘的因数要相同。 被除数、除数同除以,除以的数也相同。 乘、除都把0除外, 商不变的性质要记清。 小数四则运算法则 a. 小数加减法法则 小数加减有规律,相同数位要对齐。 个位对个位,十位对十位。…… 十分位对着十分位,百分位对着百分位。…… 总而言之一句话,小数点要对齐。 计算结果是小数,末尾有0要划去。 b. 小数乘法法则 小数乘法低位起,先按整数算出积。 再看因数中小数共几位, 就从积的右边起,数出几位点上点,末尾有0要划去。 c. 小数除法法则 小数除法高位起,看着除数找规律。 除数是整数直接除,除到哪位商哪位 不够商一零占位,商和被除数点对齐。 除数是小数变整数,被除数小数点移同位. 右边数位若不够,应该用零来补齐。 小数大小的比较 小数大小看高位,整数大时数就大。 整数相同看十分位,十分位大时数就大, 十分位相同看百分位,百分位大时数就大……。 【数的基本性质和四则运算法则】 a.分数的基本性质 分子、分母同时乘,乘的因数要相同。 分子、分母同除以,除以的数也相同。 乘、除都把0除外, 分数值的大小不变更。 b.分数加减法法则 分数加减很简单,统一单位是关键。 同分母分数相加减,只把分子相加减,分母大小不改变。 异分母分数相加减,先通分来后计算。 c. 分数乘法法则 分数乘法更简单,分子、分母分别算。 分子相乘作分子,分母相乘作分母。 分子、分母不互质,先约分来后计算。 d.分数除法法则 分数除法最简便,转换乘法来计算。 除号变成乘号后,除数的倒数要出现。 混合运算顺序歌 混合运算有顺序, 同级计算左边起。 加、减、乘、除混算题, 先算乘、除要牢记。 如果要是有括号, 先算括号里面题。 两、三步应用题分析歌谣 小小问号锁住题, 抓住关键去分析。 已知条件换成数, 相关条件全找齐。 术语连数读一读, 正确列式没问题。 字母表示数 字母表示数, 关键要记住, 省略乘号时, 数要写在前, 字母写在后。 相同的因数变底数, 因数的个数变指数。 乘号可以简写成点, 加、减、除号不能丢。 列方程解应用题 列方程解应用题, 抓住关键去分析。 已知条件换成数, 未知条件换字母, 找齐相关代数式, 连接起来读一读。 计量单位对口歌 小朋友,快排队, 手拉手对单位。 看谁说得快又对。 人民币单位元、角、分, 进率是10要牢记。 1元得10角; 1角得10分, 1元等于100分。 长度单位有哪些,相临进率都是几? 米加分米、厘米和毫米。 最大单位是千米。 1米=10分米, 1分米=10厘米, 1厘米=10毫米。 米和千米也相临, 进率1000是特例。 质量单位有哪些, 相临进率都是几? 吨与千克还有克, 进率1000要牢记。 形体单位更容易, 相临100是面积, 相临1000是体积。 大单位,小单位, 大小换算有规律。 从大到小乘进率, 小数点向右移; 从小到大除以进率, 小数点向左移。 进率是10移一位, 进率100移两位, 进率1000移三位。…… 数的整除的意义数的整除要记住,
除式各项都要是整数。
但是除数不等于0,
商是整数无余。
a÷b时可以说,
数b能够整除a,数a能被b整除。
a是数b的倍数,b是数a的约数。
如果要是求约数就去除以自然数,
如果要是求倍数就去乘自然数。
能被2、5、3整除的数
个位是0和5,一定能被5整除。
个位是2、4、6、8、0,一定能被2整除。
各个数位数字和,如果要是3倍数,一定能被3整除。
质数、合数 分清质数与合数, 关键就是看约数。 1的约数只一个, 不是质数也非合数; 如果约数只两个, 肯定无疑是质数; 3个约数或更多, 那就一定是合数。 分解质因数 分解质因数,方法是短除。 除数是质数,商也是质数。 表示的形式很简单: 合数=质数×质数…… 公约数、公倍数与互质数 公约数,公倍数,关键要把“公”记住。 公有的约数叫做公约数,公约数中最大的,就叫最大公约数。 如果公约数只有1,它们就叫互质数。 公有的倍数叫做公倍数。公倍数中最小的,就叫最小公倍数。 求法有区别,千万别失误。 短除只把除数乘,是求最大公约数。 除数和商要连乘,是求最小公倍数。 圆、圆柱、圆锥 圆的知识学习好,生产生活都需要。 要画圆,找定点,圆心确定圆位置, 半径决定圆大小。 同圆或等圆中,直径=2半径。 圆的周长和面积,全都离不开圆周率。 如果条件是半径,圆的周长2πr,πr2是面积。 如果条件是直径,圆的周长是πd。 圆周长乘圆柱高,是求圆柱侧面积。 圆面积乘圆柱高,是求圆柱的体积。 同底等高求圆锥,只需再乘三分之一。 百分数、分数应用题 百分数,百分率,又叫百分比。 只表示一个数是另一数的百分之几。 分母全部是100写法要牢记。 百分数和小数,互化有规律。 小数添上百分号小数点向右移。 百分数去掉百分号小数点向左移。 百分数和分率,应用同一理。 读一读想一想谁和谁来比。 百分数分数应用题, 关键确定单位一。 看着分量找分率, 一一对应是规律。 单位一量若已知, 就求它的几分之几或几倍。 单位一量若未知, 就列方程去分析。 已知条件换成数, 未知条件换字母, 找齐相关代数式, 连接起来读一读。 比、除法和分数的区别与联系 比与除法和分数,联系和区别要记住。 比的前项相当于分数的分子和被除数; 比的后项相当于分数的分母和除数; 比号相当于除号和分数线; 区分清楚很关键。 比是两个量的关系除法是运算, 分数只是一个数, 它们的性质紧相连。…… (被除数、除数同时乘,乘的因数要相同…..) 前项和后项同时乘,乘的因数要相同。 前项和后项同除以,除以的数也相同。 乘、除都把零除外, 比值的大小不变更。 比例尺 a.求比例尺,很容易。 先把单位来统一,写出图距与实际距离比。 再根据基本性质去约分,比的前项化为1。 b.比例尺应用题,实际距离是单位一。 单位一量若已知,就求它的几分之几或几倍, 单位一量若未知,就列方程去分析, …… 比例的意义、性质和正、反比例 相等的比,组成比例。 比例的基本性质要牢记: 内项乘积等于外项积, 解比例时做根据。 一个量变另一量跟着变, 商不变时是正比例,积不变时是反比例。 根据意义列方程,融会贯通最容易。 有理数加减法 有理数加减很简单, 符号法则是关键。 同号相加号不变, 异号相减比比看, 绝对值较大的数,符号写在结果前。
有理数乘法 有理数乘法要记住, 两数相乘同号正,异号负。 任何数乘0都得0, 负因数个数决定积正负。 偶数个负因数积为正, 奇数个负因数积为负。 有理数除法法则 有理数除法最简便, 转换乘法来计算。 除号变成乘号后, 除数的倒数要出现。 初中数学数与代数
Ⅰ、数与式 1 有理数的加法、乘法运算 同号相加一边倒,异号相加“大”减“小”;符号跟着大的跑,绝对值相等“零”正好。 同号得正异号负,一项为零积是零。【注】“大”减“小”是指绝对值的大小。 2 合并同类项 合并同类项,法则不能忘;只求系数代数和,字母、指数不变样。 3 去、添括号法则 去括号、添括号,关键看符号;括号前面是正号,去、添括号不变号; 括号前面是负号,去、添括号都变号。 4 单项式运算 加、减、乘、除、乘(开)方,三级运算分得清;系数进行同级(运)算,指数运算降级(进)行。 5 分式混合运算法则 分式四则运算,顺序乘除加减;乘除同级运算,除法符号须变(乘);乘法进行化简,因式分解在先;分子分母相约,然后再行运算;加减分母需同,分母化积关键;找出最简公分母,通分不是很难; 变号必须两处,结果要求最简。 6 平方差公式 两数和乘两数差,等于两数平方差;积化和差变两项,完全平方不是它。 7 完全平方公式 首平方又末平方,二倍首末在中央;和的平方加再加,先减后加差平方。 8 因式分解 一提二套三分组,十字相乘也上数;四种方法都不行,拆项添项去重组;重组无望试求根, 换元或者算余数;多种方法灵活选,连乘结果是基础;同式相乘若出现,乘方表示要记住。 【注】一提(提公因式)二套(套公式) 9 二次三项式的因式分解 先想完全平方式,十字相乘是其次;两种方法行不通,求根分解去尝试。 10 比和比例 两数相除也叫比,两比相等叫比例;基本性质第一条,外项积等内项积; 前后项和比后项,组成比例叫合比;前后项差比后项,组成比例是分比; 两项和比两项差,比值相等合分比;前项和比后项和,比值不变叫等比; 商定变量成正比,积定变量成反比;判断四数成比例,两端积等中间积。 11 根式和无理式 表示方根代数式,都可称其为根式;根式异于无理式,被开方式无限制; 无理式都是根式,区分它们有标志;被开方式有字母,才能称为无理式。 12 最简根式的条件 最简根式三条件:号内不把分母含,幂指(数)根指(数)要互质,幂指比根指小一点。 Ⅱ、方程与不等式 1 解一元一次方程 已知未知闹分离,分离方法就是移,加减移项要变号,乘除移了要颠倒。 先去分母再括号,移项合并同类项;系数化1还没好,回代值等才算了。 2 解一元一次不等式 去分母、去括号,移项时候要变号;同类项、合并好,再把系数来除掉; 两边除(以)负数时,不等号改向别忘了。 3 解一元一次绝对值不等式 大(鱼)于(吃)取两边,小(鱼)于(吃)取中间。 4 解一元一次不等式组 大大取较大,小小取较小;大小、小大取中间,大大,小小无处找。 5 解分式方程 同乘最简公分母,化成整式写清楚;求得解后须验根,原(根)留、增(根)舍别含糊。 6 解一元二次方程 方程没有一次项,直接开方最理想;如果缺少常数项,因式分解没商量; b、c相等都为零,等根是零不要忘;b、c同时不为零,因式分解或配方; 也可直接套公式,因题而异择良方。 7 解一元二次不等式 首先化成一般式,构造函数第二站;判别式值若非负,曲线横轴有交点; a正开口它向上,大于零则取两边;代数式若小于零,解集交点数之间; 方程若无实数根,口上大零解为全;小于零将没有解,开口向下正相反。 Ⅲ、函数 1 坐标系上坐标点 坐标平面点(x,y),横在前来纵在后;X轴上y为0,x为0在Y轴。 象限角的平分线,坐标特征有特点;一、三横纵都相等,二、四横纵恰相反。 平行某轴的直线,点的坐标有讲究;平行于X轴,纵等横不同;平行于Y轴,横等纵不同。 对称点坐标要记牢,相反位置莫混淆;X轴对称y相反,Y轴对称X反;原点对称最好记,横纵坐标变符号。 2 函数自变量的取值 分式分母不为零,偶次根下负不行;零次幂底数不为零,整式、奇次根全能行。 3 判断正比例函数 判断正比例函数,检验当分两步走;一量表示另一量,是与否;若有还要看取值,全体实数都要有。 4 正比例函数()图像与性质 正比函数很简单,经过原点一直线;K正一三负二四,变化趋势记心间; K正左低右边高,同大同小向爬山;K负左高右边低,一大另小下山峦。 5 反比例函数()图像与性质 反比函数双曲线,所有都不过原点;K正一三负二四,两轴是它渐近线; K正左高右边低,一三象限滑下山;K负左低右边高,二四象限如爬山。 6 一次函数()图像与性质 一次函数是直线,图像经过仨象限;两个系数k与b,作用之大莫小看; k为正来右上斜,x增减y增减;k为负来左下展,变化规律正相反; k是斜率定夹角,b与Y轴来相见;k的绝对值越大,线离横轴就越远。 7 二次函数()图像与性质 二次方程零换y,二次函数便出现;全体实数定义域,图像叫做抛物线; 抛物线有对称轴,两边单调正相反;开口、顶点和交点,它们确定图象现; 开口、大小由a断,c与Y轴来相见;b的符号较特别,符号与a相关联; 顶点非高即最低。上低下高很显眼,如果要画抛物线,平移也可去描点; 提取配方定顶点,两条途径再挑选,若要平移也不难,先画基础抛物线, 列表描点后连线,平移规律记心间,左加右减括号内,号外上加下要减。 8 三角函数 三角函数的增减性:正增余减。 特殊三角函数值(30度、45度、60度)记忆:正弦(值)、余弦(值)分母2、正切(值)、余切(值)分母3。 空间与图形 Ⅰ、线与角 1 直线、射线与线段 直线射线与线段,形状相似有关联;直线长短不确定,可向两方无限延; 射线仅有一端点,反向延长成直线;线段定长两端点,双向延伸变直线。 两点定线是共性,组成图形最常见。 2 角 一点出发两射线,组成图形叫做角;共线反向是平角,平角之半叫直角; 平角两倍成周角,小于直角叫锐角;直平之间是钝角,平周之间叫优角; 和为直角叫互余,和为平角叫互补。 3 两点间距离公式 同轴两点求距离,大减小数就为之;与轴等距两个点,间距求法亦如此; 平面任意两个点,横纵标差先求值;差方相加开平方,距离公式要牢记。 Ⅱ、平面图形 1 平行四边形的判定 要证平行四边形,两个条件才能行;一证对边都相等,或证对边都平行; 一组对边也可以,必须相等且平行; 对角线,是个宝,互相平分“跑不了”;对角相等也有用,“两组对角”才能成。 2 矩形的判定 任意一个四边形,三个直角成矩形;对角线等互平分,四边形它是矩形。 已知平行四边形,一个直角叫矩形;两对角线若相等,理所当然为矩形。 3 菱形的判定 任意一个四边形,四边相等成菱形;四边形的对角线,垂直互分是菱形; 已知平行四边形,邻边相等叫菱形;两对角线若垂直,顺理成章为菱形。 4 梯形的辅助线 移动梯形对角线,两腰之和成一线;平行移动一条腰,两腰同在“△”现; 延长两腰交一点,“△”中有平行线;作出梯形两高线,矩形显示在眼前; 已知腰上一中线,莫忘作出中位线。 5 三角形的辅助线 题中若有角(平)分线,可向两边作垂线;线段垂直平分线,引向两端把线连; 三角形边两中点,连接则成中位线;三角形中有中线,延长中线翻一番。 6 圆内的正多边形 份相等分割圆,n值必须大于三,依次连接各分点,内接正n边形在眼前。 7 圆中比例线段 遇等积,改等比,横找竖找定相似;不相似,别生气,等线等比来代替; 遇等比,改等积,引用射影和圆幂;平行线,转比例,两端各自找联系。文章来源于网络
如有侵权请联系删除!
咨询:
点击下方“阅读原文”,咨询更多课程详情!
↓↓