python可视化代码_python可视化实现代码

本文介绍了如何使用Python的matplotlib库进行数据可视化,包括导入numpy和matplotlib.pyplot库,绘制正弦和余弦函数曲线,设置图表大小、轴标签、标题,以及调整Y轴范围。还详细解析了figure函数的参数,如figsize、dpi、facecolor等,帮助读者理解并应用Python数据可视化。
摘要由CSDN通过智能技术生成

python可视化

#导入两个库

import numpy as np

import matplotlib.pyplot as plt

#第一个参数就是x轴的初始值

#第二个参数是x轴的终止值

#第三个返回num均匀分布的样本,也就是0-12的区间取多少个点,如果为曲线的最好数值大一点

x = np.linspace(0, 12, 50)

y = np.sin(x) #函数

z = np.cos(x) # 函数

plt.figure(figsize=(8, 4))#解释在下面

plt.plot(x, y, label="$sin(x)$", color="red", linewidth=2) #描绘函数图像以及标注

plt.plot(x, z, "b--", label="$cos(X^2)$")# b--为虚线的意思

plt.xlabel("Time(s)") #x轴的名字

plt.ylabel("Volt1")

plt.title("PyPlot First Example")

#第一个参数是表示y轴的开始值

#第二个参数是表示y轴的结束值

plt.ylim(-1.2, 1, 2)

plt.legend()

plt.show()

(1)figure语法说明

figure(num=None, figsize=None, dpi=None, facecolor=None, edgecolor=None, frameon=True)

num:图像编号或名称,数字为编号 ,字符串为名称

figsize:指定figure的宽和高,单位为英寸;

dpi参数指定绘图对象的分辨率,即每英寸多少个像素,缺省值为80 1英寸等于2.5cm,A4纸是 21*30cm的纸张

facecolor:背景颜色

edgecolor:边框颜色

frameon:是否显示边框

b33baffee973cacbfbab0bd0b30dfbd4.png

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对聚米学院的支持。如果你想了解更多相关内容请查看下面相关链接

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值