cuda linux编译器_Windows 10 下的 CUDA 安装和使用指南

本文详细介绍了在Windows 10环境下,使用CUDA C/C++编程的步骤,包括通过Visual Studio和Mingw-w64两种方式。内容涵盖了CUDA Toolkit的安装、在Visual Studio中创建CUDA项目以及解决IntelliSense问题、Mingw-w64的编译设置,并提供了一个简单的CUDA测试程序。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文旨在介绍 Windows 10 下使用 CUDA C/C++ 编程的方法。我的测试环境是

  • 系统:Windows 10 家庭版
  • CPU:i7-9750H
  • GPU:NVIDIA GeForce GTX 1660 Ti with Max-Q
  • CUDA Toolkit 版本:10.2

在 Windows 系统中,使用 CUDA 的两种可行的方案是

  1. Visual Studio + CUDA,并在 Visual Studio 中编辑代码、运行。
  2. Mingw-w64 + CUDA,并在文本编辑器中编辑代码、运行。

简单来说,编译 CUDA C/C++ 代码首先需要一个 C/C++ 的编译器,然后再按照 NVIDIA Driver 和 CUDA Toolkit 等组件。下面具体介绍安装步骤:

安装步骤

  1. 安装一个 C/C++ 编译器。在 Windows 系统上,可用的 C/C++ 编译器包括 Microsoft Visual Studio 中的 MSVC (命令: cl) 和 mingw-w64 (命令: gcc/g++)。

2. 安装 NVIDIA Driver,即最新的显卡驱动。这一步也可以跳过,因为第3步安装 CUDA Toolkit 时会自动帮你安装显卡驱动。

3. 安装 CUDA Toolkit。在 CUDA Toolkit 的下载页面中选择正确的版本并安装。

使用方法 (Visual Studio)

使用 Visual Studio 新建一个项目,选择项目类型是 CUDA 10.2 Runtime

7d091e457d79e4f4b4578a0e3e3bb994.png

Visual Studio 将打开一个项目,其中包含一个源文件 kernel.cu,接着就可以在其中编辑代码并运行了。

需要注意的是,Visual Studio 的 IntelliSense 对 CUDA 的语法支持很不好。 在文件的开头加入

#include <cuda_runtime.h>
#include <device_launch_parameters.h>

可以完成部分代码高亮的功能,但是像 <<<X,Y>>> 这样的语句还是会提示错误,但是可以正常编译运行。对于这种现象,目前似乎只有容忍了。

此外,若想要使用 CUDA 的其它库的功能,需要在链接器中设置相应的路径。例如,若想要使用 cuRAND 的功能,需要在配置属性->链接器->输入->附加依赖项中添加 curand.lib

若使用的是中文版本的 Visual Studio,则编译时可能会出现关于编码的 C4819 警告。这个警告对实际运行没有什么影响,可以在配置属性->CUDA C/C++->Command Line->其他选项中添加:-Xcompiler "/wd 4819" ,从而消除此警告。

使用方法 (Mingw-w64)

Mingw-w64 提供的 C 和 C++ 的编译器分别是 gcc 和 g++,而 CUDA 的编译器 nvcc 以它们为基础。nvcc 的使用方法与 gcc 和 g++ 基本相同。

如果需要使用 curand 扩展库,则需要在 nvcc 中指定加入参数 -lcurand来链接库 cuRAND。 由于需要在命令行下进行编程,推荐使用 VS Code 进行代码编辑。

测试程序

我们使用如下简单的向量求和程序测试 CUDA 的效果:

#include <iostream>
#include <cuda_runtime.h>
#include <device_launch_parameters.h>

using namespace std;

__global__ void vec_add(int *a, int *b)
{
    int i = blockIdx.x;
    a[i] += b[i];
}

int main()
{
    const int N = 100;
    // ---- allocate the memory ---- //
    int *a, *b;
    cudaMallocManaged(&a, N*sizeof(int));
    cudaMallocManaged(&b, N*sizeof(int));
    // ---- initialize a,b ---- //
    for(int i=0;i<N;i++)
    {
        a[i] = i;
        b[i] = 2*i;
    }
    // ---- add b to a ---- //
    vec_add<<<N,1>>>(a,b);
    cudaDeviceSynchronize();
    // ---- display a ---- //
    for(int i=0;i<N;i++)
    {
        cout << a[i] << endl;
    }
}

将上述代码保存为 test.cu (.cu 是 CUDA C/C++ 源文件的后缀),然后再命令行中输入

nvcc -o test test.cu

即可在当前目录生成名为 test 的可执行文件,执行此文件将输出

0
3
6
9
12
15
18
21
24
27
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值