cmd看excel有多少个子表_Excel使用实例-baby_trade_history

本文通过Excel对婴儿产品销售数据进行深入分析,包括时间趋势、品类变化、性别偏好及购买年龄关系。发现市场需求逐年上升,热销品类集中在28、50008168和50014815,女孩购买总量超过男孩,且对特定商品50018831有较高偏好。购买行为主要集中在婴儿出生后一年内。
摘要由CSDN通过智能技术生成

f01ba47bf983754fb780eb72c410acde.png

一、日常工作中的基本操作

从电子表中数据类型转换(文本、数字、日期等)开始,到透视表的熟练掌握,常用函数的合理运用都是大部分工作的基本技能,以下搜集了一些比较实用的供大家一起互相学习。

格式转换的:

Excel表格中格式转换的这些套路,你都get了吗?

关于引用的小技巧:

秒懂Excel的三种引用

常用函数Vlookup的:

学会这个技能,你的Excel分析水平就超过了同龄人

善用图表的使用:

如何使用Excel绘制图表?

箱型图的画法:

excel怎么绘制箱形图?excel2016中绘制一组数据的箱形图教程

系统进行分析:

如何使用Excel进行数据分析?

时间充裕,想系统学习的,也可以参考以下Excel进阶教程:

Excel进阶教程_河南应用技术职业学院_中国大学MOOC(慕课)

二、操作实例

回到主题,上次找了个baby trade的历史数据,现在用Excel来实际分析下:

首先对拟解决的问题进行回顾:

(1)时间上购买行为是否有差异,未来的需求是否有扩大的趋势,分析总体到月销售情况,决定后期投入力度。

(2)品类的需求是否因时间而有变化,分析品类在时间上的销售数量变化,决定后期投入方向。

(3)商品购买的性别偏好,分析男/女最喜欢的商品类别,用2表相同的用户id进行关联。

(4)从购买时间和出生日期去统计一般的购买行为是出生前,还是出生后多长时间。

原始数据的初步调整,英文列名的中文置换,性别的中文展示,同时整合入一个电子表的2个子表,然后对数据进行基本的清洗。

1、去重

先看交易历史,使用用户id+购买时间结合作为去重条件,避免出现顾客重复购买数据被误删的情况。

ac41a8df4a48ae509c4feab5c577711c.png

196aeda0a87e978cb58f923d51b0af93.png
发现1个重复值

另撤销去重,使用透视表对删除的数据进行一一比对,是否错误,得以下:

cf10b17a94be15ccf78564811dcc14eb.png
有一条数据重复

26faea645e94094ba08a318ecaa6a57d.png

在原始数据中,发现购买的商品大类、小类、购买数量均一样,只产品特性和购买行为不一样,故认定顾客当天实际是购买了一件商品(出现了更换产品的情况),可以按前面去重方式剔除一条。

2、异常数据处理

从购买历史记录,我们发现,单用户单日最小购买数量是1,最大购买数量是10000,结合前面的四分位法判断异常。

22e9fc784f142fa19b57c865a259dd57.png

因电商有节点促销的爆发性,从单用户角度判别可能也会失真,那可以汇总到天去判断。

先处理购买时间,解决整体市场销售趋势变化,使用数据-分列,按日期YMD进行处理。增加列“购买年“和”购买月”:

35132350f8212419c39b3eb66e792725.png

然后按天汇总,使用数据分析工具得:

0f1df3129a4d6ecfbf36fb9556b87795.png

中位数为Q2=44,下四分位数为Q1=30,上四分数为Q3=64;

按最大异常值Q3+3*(Q3-Q1)=166。则单用户单日购买数量大于单日总最大异常值的数据剔除,即大于166的32条数据。

3、解决前面的第1和第2个问题

采用数据透视表,购买月为行,购买年为列,购买数量求和。

36e4a1bbd08831404749d12266dcde43.png

复制数据出来,2012年7月是从2号开始,而2015年2月只是1-5号数据。故可以按上下半年来做同比,上半年取2013年、2014年整个上半年比较,1月份取2012-2015进行比较,下半年取2012-2015三年整体进行比较。

addad4359395dab6ffe1d70bd8b3e020.png

1ed34f8dac73004a3721570a0f9ada0e.png

从时间上看,整体市场不论上下半年,都呈快速增长的趋势,可以加大投入。

商品品类上看,将商品大类加入行,对月进行组合(起始1,终止12,步长6),对销售数量进行排序。

e899714e28f201576328d04636aa8153.png

166e73edf388500e388df542dfa20901.png

dad344fb4959a709ff753de04e1f206f.png

从品类上看,销售绝对值前三分别是28,50008168和50014815。2014年上半年增速最快的是28品类,下半年最快的是38品类。

4、解决婴儿性别与购买偏好和购买时间问题

使用vlookup函数,关联用户id的婴儿出生日期和性别。

90fa1469bc3bbe1f4f9530166c79ef60.png

对出生日期,使用分列进行日期处理,用购买日期-出生日期得到购买时婴儿年龄。

因为得到的是天,可以再除以365,得到是几岁,保留1位小数。

bbb51e36d8fdc95db4d877654801c299.png

筛选出能匹配出年龄的数据,复制出来形成新表,对表格进行透视。商品大类为行,性别为列,购买数量求和,得下表:

a4547accbad420da973855baeb429c77.png

从数据看,家长为女孩购买的总数比比男孩多。为男孩购买最多的前三项是50008168,28和50014815;为女孩购买最多的前三项是50014815,50008168和28,所以这三个品类也是男女孩最喜欢的类别。

0445fdea529de84152c6e60ad0c697d5.png

516922849931eb6f8e4631b1c48c6011.png

从小品类看,女孩最喜欢的前十销售490,占总销售935的52.4%;男孩最喜欢的前十销售195,占总销售559的34.9%,这样看女孩喜欢的商品更集中,尤其是排名第一的50018831,占比总销售21.9%,此类商品可以重点关注,加大备货。

下面看婴儿年龄、性别与购买数量的关系。使用购买时婴儿年龄为行,性别为列,购买数量求和得表:

7739e513ccba964eafe16851ac131ea4.png

由于数据过于分散,现对年龄进行分段,同时表中年龄28.29异常,剔除。年龄分段如下:

2309ccdad154854c1d8de72a18b10964.png

b77f99c41e98ed4e8fde2f2b68671e73.png

透视表,排序后得如下结果:

c3851334d0e1e4f9086cafe4e9e84a50.png

家长一般会在婴儿出生后到1岁内购买商品,其次是1岁到2岁之间,也有部分家长在孩子出生前1年就开始购买。性别上,父母均在孩子1岁前购买的可能性>孩子1岁以后购买,5岁起父母还购买商品的可能性急剧减小,10岁以上的可能性<1%。

综合数据得出以下预测:

1、婴儿产品的需求在逐年上升,年内上半年旺季在5月,下半年在11月;

2、品类上28,50008168和50014815需求量最多;

3、性别需求上,女孩的需求总量大于男孩,女孩的需求更集中,主要在50018831品类上;

4、父母更愿意在婴儿出生到1岁,和1-2岁之间购买婴儿产品,后期可在有这个年龄段婴儿的家庭进行重点宣传。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值