对于
,我们称之为二元关系,即两个变元(a和b可取任意值)之间的一种关系。
若
且
蕴含着
,则称该关系是传递的。
比如,a 是 b 的原因,而 b 又是 c 的原因,则称 a 也是 c 的原因,所谓的第一因就这么推导出来的。
又比如,a 比 b 强,b 又比 c 强,则 a 也比 c 强。
但是,二元关系并非都是传递的。比如世界杯比赛就日常爆冷门,a 胜过 b,b 胜过 c,并不意味着 a 照样能胜过 c 。以胜负定义强弱关系的话那么强弱关系也不必然传递了。
亦或者,a 是 b 的父亲,b 是 c 的父亲,但 a 不是 c 的父亲。
同时不难发现,自然数的概念满足 a < b 且 b < c,则 a < c,可知自然数上的“<”关系是传递的。
而在集合论中,并没有我们直观理解的“<”代表的大小关系,只有唯一的二元关系符号“∈”
因此,要用集合模拟自然数的概念,就需要集合满足 a∈b 且 b∈c,则 a∈c 。
以空集代表 0 的概念,则有
,
且
而像
这样的集合,虽然有
,但
,
只有一个元素,那就是
因此,在集合论中可以
的概念模拟自然数中的“+1”,比如
,有
且
,有
且
且
有些复杂不是?
对于这种集合,我们可以精简的概括为:倘若
则
。倘若一个集合是传递集,则它的元素都是它的子集。
这样,“
是序数”的意思是,
是一个传递集,并且 ∈ 是其上的良基关系,即
的非空子集都具有最小元素。
在非良基的集合论中,一个集合是可以属于其自身的。将集合比喻为文件夹的话,你不断打开这个内含文件夹的文件夹可能是见不到底的,比如打开那个没有文件的文件夹——空集,你遇不到它
显然,自然数都是序数。并且所有自然数的集合也是序数,一个大于所有自然数的序数
那么,如何判断一个集合是不是序数呢?
要么对着这个集合验证一遍,要么就是按构造序数的方式构造出来的集合肯定就是序数了。而不满足两者的,你没法说这是一个序数,这样的序数存在。