Keras使用陷阱
这里归纳了Keras使用过程中的一些常见陷阱和解决方法,如果你的模型怎么调都搞不对,或许你有必要看看是不是掉进了哪个猎人的陷阱,成为了一只嗷嗷待宰(?)的猎物
Keras陷阱不多,我们保持更新,希望能做一个陷阱大全
内有恶犬,小心哟
TF卷积核与TH卷积核
Keras提供了两套后端,Theano和Tensorflow,这是一件幸福的事,就像手中拿着馒头,想蘸红糖蘸红糖,想蘸白糖蘸白糖
如果你从无到有搭建自己的一套网络,则大可放心。但如果你想使用一个已有网络,或把一个用th/tf训练的网络以另一种后端应用,在载入的时候你就应该特别小心了。
卷积核与所使用的后端不匹配,不会报任何错误,因为它们的shape是完全一致的,没有方法能够检测出这种错误。
在使用预训练模型时,一个建议是首先找一些测试样本,看看模型的表现是否与预计的一致。
如需对卷积核进行转换,可以使用utils.np_utils.kernel_convert,或使用utils.layer_utils.convert_all_kernels_in_model来对模型的所有卷积核进行转换
向BN层中载入权重
如果你不知道从哪里淘来一个预训练好的BN层,想把它的权重载入到Keras中,要小心参数的载入顺序。
一个典型的例子是,将caffe的BN层参数载入Keras中,caffe的BN由两部分构成,bn层的参数是mean,std,scale层的参数是gamma,beta
按照BN的文章顺序,似乎载入Keras BN层的参数应该是[mean, std, gamma, beta]
然而不是的,Keras的BN层参数顺序应该是[gamma, beta, mean, std],这是因为gamma和beta是可训练的参数,而mean和std不是
Keras的可训练参数在前,不可训练参数在后
错误的权重顺序不会引起任何报错,因为它们的shape完全相同
shuffle和validation_split的顺序
模型的fit函数有两个参数,shuffle用于将数据打乱,validation_split用于在没有提供验证集的时候,按一定比例从训练集中取出一部分作为验证集
这里有个陷阱是,程序是先执行validation_split,再执行shuffle的,所以会出现这种情况:
假如你的训练集是有序的,比方说正样本在前负样本在后,又设置了validation_split,那么你的验证集中很可能将全部是负样本
同样的,这个东西不会有任何错误报出来,因为Keras不可能知道你的数据有没有经过shuffle,保险起见如果你的数据是没shuffle过的,最好手动shuffle一下
未完待续
如果你在使用Keras中遇到难以察觉的陷阱,请发信到moyan_work@foxmail.com说明~赠人玫瑰,手有余香,前人踩坑,后人沾光,有道是我不入地狱谁入地狱,愿各位Keras使用者积极贡献Keras陷阱。老规矩,陷阱贡献者将被列入致谢一栏