mandelbrot集 matlab,再谈Julia集与Mandelbrot集

本文探讨了Julia集和Mandelbrot集,通过复数的迭代运算展示它们的形成过程。Julia集是特定迭代运算下不会发散的点的集合,而Mandelbrot集则是所有使0点迭代不会发散的复数c的集合。两者之间的关系以及它们在复动力学中的重要性也被阐述。
摘要由CSDN通过智能技术生成

很早以前,我简单介绍过 Julia 集和 Mandelbrot 集,文章在此。这可以说是数学中最神秘、最令人敬畏的研究对象之一。不过,那时我对这个话题了解还不太深。今天见到这个网页,让我对 Julia 集和 Mandelbrot 集有了更深的了解。我查阅了一些其他的资料,然后写下这篇长文,与大家一同分享。继续阅读以前,建议先看看我原来那篇文章(很短),那里面有很多漂亮的 Julia 集和 Mandelbrot 集的图片,这篇文章就不再展示了。

还是让我们先来简单复习一下复数吧。由于承认“负数也能开平方”将会带来很多幽雅和便利的结论,因此我们发明了虚数,用 i 来表示 -1 的平方根(即虚数单位),并把实数扩展为复数(即一切形如 a + b i 的数)。正如实数可以用数轴上的点来表示一样,复数可以用平面直角坐标系上的点来表示。令 x 轴表示复数的实数部分,令 y 轴表示复数的虚数部分,则 a + b i 就对应了平面上的点 (a, b) 。我们把这个平面直角坐标系叫做“复平面”。

复数与复数之间不但可以相加相减,还可以相乘相除。(a + b i) + (c + d i) 就等于 (a + c) + (b + d) i ,而 (a + b i) (c + d i) 则等于 (ac – bd) + (bc + ad) i 。需要注意的是,我们不能讨论一个复数乘以另一个复数后是变大了还是变小了,因为复数根本没有大小之分。如果真的要比较它们的大小,我们可以比较它们的模。复数 a + b i 的模就是 a2 + b2 的平方根,也就是它到复平面原点的距离。如果我们用不同的颜色来表示不同大小的模,那么整个复平面大致就是这样:

56e7072920c7d71bc77e8b2cd816a457.png

如果我们用 |z| 来表示复数 z 的模,那么上面这个图也就是函数 f(z) = |z| 的“等高线地图”。复数的模有一个重要的性质,大家可以自行验证:乘积的模等于模的乘积,即 |a·b| = |a|·|b| 。现在,我们对复平面上的所有点都进行平方,画出 f(z) = |z2| 的等高线地图:

c94027b894ee8d1c4fd4b55079c6484b.png

可以看到,这一操作让模的变化更剧烈了,等高线变得更加密集了。外面浩瀚的蓝色空间,就对应着那些模已经相当大了的复数。

有趣的事情开始了。如果对上图中的每个点再加上某个数,比如 0.3 ,那么整个图会怎样变化呢?容易想到,对于模相同的复数来说,给实数部分加上 0.3 ,这对实数部分本来就较大的数影响会更大一些。因此,上图将会变得更扁,整个图形会在水平方向上压缩。这也就是 f(z) = |z2 + 0.3| 的等高线地形图:

b13b67c58246fd21904ed8540709e1b5.png

接下来,我们再对所得的图形进行平方,继续加剧模的变化:

7ba1d9af11b4b77f834bee461c29d40b.png

然后,再给每个点的实数部分加上 0.3 ,于是得到 f(z) = |(z2 + 0.3)2 + 0.3| 的图像:

f048c00ecf69d2219413ca46ce499a83.png

再平方:

04c6131a1276f13a96834b2a9b3651b4.png

再加上 0.3 ,此时图形已经开始变得有意思起来了:

  • 3
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值