粒子滤波matlab示例,[转载]粒子滤波Matlab示例

本文详细介绍了粒子滤波算法的五个步骤,并通过MATLAB代码展示了二维空间中物体运动状态的跟踪示例。利用粒子滤波,对物体的非线性运动进行建模和预测,通过迭代优化逼近真实状态,降低误差。
摘要由CSDN通过智能技术生成

粒子滤波算法源于蒙特卡洛思想,即以某事件出现的频率来指代该事件的概率。在粒子滤波过程中,X(t)实际上是通过对大量粒子的状态进行处理得到的。

粒子滤波的5个步骤:

1)初始状态:用大量粒子模拟X(t),粒子在空间内均匀分布;

2)预测阶段:根据状态转移方程,每一个粒子得到一个预测粒子;

3)校正阶段:对预测粒子进行评价,越接近于真实状态的粒子,其权重越大;

4)重采样:根据粒子权重对粒子进行筛选,筛选过程中,既要大量保留权重大的粒子,又要有一小部分权重小的粒子;

5)滤波:将重采样后的粒子带入状态转移方程得到新的预测粒子,即步骤2。

%在二维空间,假设运动物体的一组(非线性)运动位置、速度、加速度数据,用粒子滤波方法进行处理

%实验室的博客

% 参数设置

N = 100; %粒子总数

Q =

5; %过程噪声

R =

5; %测量噪声

T =

10; %测量时间

theta =

pi/T; %旋转角度

distance =

80/T; %每次走的距离

WorldSize =

100; %世界大小

X = zeros(2,

T); %存储系统状态

Z = zeros(2,

T); %存储系统的观测状态

P = zeros(2,

N); %建立粒子群</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值