matlab 对bass模型最回归,基于Bass模型两种参数估算算法比较研究.pdf

该研究对比了Bass模型的两种参数估算方法——非线性最小二乘法和遗传算法,发现遗传算法在新产品扩散模型,尤其是成长期产品的参数估计上更为适用,能用少量数据得出满意结果,而非线性最小二乘法则需更多数据,如销售峰值,才能实现良好拟合。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

维普资讯

基于Bass模型的两种参数估算算法比较研究 ·125

基于Bass模型的两种

参数估算算法比较研究

杨敬辉 武春友

(大连理工大学管理学院)

【摘要】本文介绍了新产品扩散 Bass模型及模型参数估算方法,比较了这些参

数估计方法的利弊,并就中国移动用户发展情况,分别采用非线性最小二乘法和遗

传算法建立扩散模型,分析和比较 了两种方法的结果,得 出遗传算法比非线性最小

二乘法更适合于Bass模型参数估计,特别是对构建处于成长期的产品扩散模型,遗

传算法可以以较少的已知数据(至少4~5个以上的数据点),得 出令人满意的结果,

而采用非线性最小二乘法必须 已知销售峰值的数据后,才能得到较好的拟合效果。

关键词 产品扩散 Bass模型 非线性最小二乘法 遗传算法 移动用户

中图分类号 F713.52 文献标识码 A

ToCompareTwoKindsofEstimates

on theParametersofBassM odel

Abstract:ThepaperintroducesthestructureofBassmodelandallkindsofes—

timatesontheparametersofthismodelfrom literatures,andthencomparesthead—

vantagesanddisadvantagesoftheseestimatesfortheparameters.NonlinearLeast

SquaresandGeneticAlgorithmsarechosentoestimatethediffusi

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值