回归预测 | MATLAB实现GLM广义线性模型数据回归预测

本文介绍了如何使用MATLAB实现GLM广义线性模型进行数据回归预测。广义线性模型是线性模型的扩展,适用于响应变量分布为指数分散族的情况。通过glmfit和glmval函数,我们可以拟合和计算模型,同时讨论了联系函数的选择及其在不同分布下的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

回归预测 | MATLAB实现GLM广义线性模型数据回归预测

基本介绍

广义线性模型 (generalized linear model) 是在普通线性模型的基础上推广而得出的应用范围更广,更具实用性的回归模型。在统计学上,广义线性模型是一种应用灵活的线性回归模型。该模型允许因变量的偏差分布有除了正态分布之外的其它分布。此模型假设实验者所量测的随机变量的分布函数与实验中系统性效应(即非随机的效应)可经由一链接函数(link function)建立可解释其相关性的函数。

1

模型结构

当一个处理样本的回归模型是线性模型,且连接函数满足一定特性(特性下面说明)时,我们把模型叫做广义线性模型。因为广义模型的最后输出可以为离散,也可以为连续,因此,用广义模型进行分类、回归都是可以的。线性回归是广义线性模型的子类,因为连接函数是f(x) = x本身的时候,也就是不做任何处理时,它其实就是一个线性回归啦。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

机器学习之心

谢谢支持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值