计算机进位计数制实训课教案,进制转换汇报课教案[五篇]

《进制转换》教学设计

课题:进制之间的转换

教学内容:二进制、八进制、十进制、十六进制之间的转换 教授方法:讲授法

教学目标:了解数制的基本概念

掌握其它进制转十进制和十进制转其它进制的方法

教学重难点:二进制、八进制、十进制、十六进制之间的转换

进制转换的方法

教学活动:

一、 创设情境、激趣导入

时钟工作的原理,让学生了解生活中的进制数,激发学生对进制数的兴趣。

自然语言中一般使用十进制,但计算机处理信息和数据归根结底都是二进制,那二进制数与十进制数之间如何进行转换呢?其他进制数中又是如何进行转换的呢?今天这节课我们就来学习进制数之间的转换方法。

二、 新课讲授

(一)数制的概念

教师组织学生阅读教材,帮助学生理解“基数”和“位权”,了解不同进制对应的缩写。

(二)进行十进制数与二进制数之间的转换

教师讲解进制转换方法,学生完成进制转换练习,并对进制数转换方法进行归纳总结。 1.十进制转换为二进制

十进制数转换为二进制数时,整数部分和小数部分要分别运算。 (1)十进制整数(除2取余法)

将十进制整数除以2,所得的余数即为对应的二进制数低位的值;继续对商除以2,所得的各次余数就是二进制的各位的值。如此进行直到商等于0为止,最后一项余数为所求二进制最高位的值。 例:(322)10=(101000010)2

2.二进制转换为十进制(按权展开法)

按照二进制数各位的权与该位数码是0或1,分别求出各位代码的数值,然后相加,就得到转换结果。 例:(1011)2=1×10^3+0×10^2+1×10^1+1×10^0 (三)二进制、八进制、十六进制之间的转换 1.二进制与八进制之间的转换 由于8=2×2×2,即8=2³。可知一位八进制数相当于3位二进制数。

(1)二进制数转换成八进制数

将一个二进制数转换成八进制数,只要把二进制数从右往左每三位计算出对应的一位八进制数(不足三位的,前面添加“0”补足三位)。

(2)八进制数转换成二进制数

将一个八进制数转换成二进制数,只要把每位八进制数用对应的三位二制数来代替。

在将八进制数转换成二进制数时,最后得到的二进制数最高位的“0”往往都可以去掉。 2.二进制与十六进制之间的转换

由于16=2×2×2×2,即16=24。因此,一位十六进制数相当于4位二进制数。 (1)二进制数转换成十六进制数

将一个二进制数转换成十六进制数的方法是:只要把二进制数从右往左每四位为一组计算出对应的一位十六进制数(不足四位的,前面添加“0”补足四位)。

(2)十六进制数转换成二进制数

将一位十六进制数转换成二进制数,只要把每位十六进制数用对应的四位二制数来代替。

在将十六进制数转换成二进制数时,最后得到的二进制数最高位的“0”往往都可以去掉。

需要说明的是,表示一个数,如果是十进制数,则不必特别注明果是

二、

八、十六进制数,则要用下标或字母来说明。

三、 课堂小结

学生讲述收获并小结本次课重点知识 学生对进制转换进行归纳总结

四、作业布置

完成课后思考与练习

《数制及其转换》

尊敬的各位老师:大家好!我说课的内容是《数制及其转换》。

一、说教材

1、教材分析

《数制及其转换》是从人民邮电出版社教材《大学计算机基础》第一章第三节内容,它是理解计算机原理的重要突破点,奠定了学生对计算机处理信息最本质的认识,在大学的计算机基础教程中都有相当篇幅的讲述,要求学生必须彻底理解,记忆牢固,灵活应用。

2、教学目标 (1)知识目标:

①了解各种常用数制对应的基数和位权; ②巩固各数制的简单运算及转换方法;

③掌握十进制与R进制之间相互转换的方法。 (2)能力目标:

①培养学生的推断能力及归纳总结能力;

②锻炼学生对所学知识的理解能力和接受能力。 (3)情感目标:

①养成学生积极思考问题的良好学习习惯; ②增强学生之间以及师生之间的情感交流。

3、教学重点:常用进位计数制的构成方法以及相互转换的方法

4、教学难点:十进制与R进制之间的相互转换

二、说学情

具体授课对象为大学一年级的动画学院的学生,其男生数量普遍多于女生,虽然女生的学习态度较好,但理解接受能力较薄弱,因此要适当放慢上课速度,注重演示、讲解和练习的三结合,耐心讲解,确保学生都能够掌握好该部分内容。

三、说教法

本节课主要采用演示、讲解和练习三结合的教学方法,这种方法充分体现了以教师为主导、学生为主体的教学原则。通过具体实例,帮助学生理解十进制与R进制之间的相互转换;通过练习,使学生进一步巩固所学到的知识。

除了传统的讲授法之外,应尽可能的选用趣味性的教学方法来激发学生的兴趣。例如,在介绍三种常用进制时,为了避免单纯的罗列知识,采用了比较教学法。利用R进制与十进制数之间的区别和联系,在对比中异中求同,同中求异,把枯燥的、陌生的R进制的学习转化为有趣的、生动的学习,使学生在学习的过程中随时有新的发现,让他们感觉到原来数字之间还有这么多的联系,从而加深学生对R进制及数制转换知识的理解,使学生在知识与技能的学习中迅速得到提高,尽快达成教学目标。

四、说学法

对于本节课内容,学生的学法是“建构知识——练习巩固——归纳总结”。

首先结合日常生活中的具体实例提出问题,让学生带着问题听老师讲解相关的知识,在此过程中,指导学生积极思考所提出的问题;然后布置相应的练习,让学生边学边练,实际操作,自我探索,自主学习,使学生在完成练习的过程中不知不觉实现知识的传递、迁移和融合;最后归纳总结,引导学生提出问题、讨论问题和解决问题,进一步加深对知识的理解和记忆,有助于知识的消化。

五、说教学环境与课前准备 一台多媒体电脑及相关的课件

六、教学过程 授课课时:2课时

教学安排:为了更好的突出教学重点和难点,让学生在知识学习中潜移默化的掌握不同进制之间的转换方法,我把第一课时分为三个部分进行讲授:引入新课(5分钟)——常用进制的构成方法(10分钟)——十进制与R进制之间的相互转换详讲(20分钟)——课堂练习(5分钟)——公布正确答案、总结归纳、交流心得、布置作业(5分钟)

(一)提出问题,引入新课(预计耗时5分钟)

首先复习数据这个概念,从而提出数据在计算机中用什么表示,进而引出数制的概念。(在计算机科学中,数据是指所有能输入到计算机并被计算机程序处理的符号的介质的总称,是用于输入电子计算机进行处理,具有一定意义的数字、字母、符号和模拟量等的通称。)

介绍数制的时候是通过平时大家能接触的数制开始。在日常生活中,人们主要使用十进制,但在某些时候也使用其它进制,如十二进制(1年有12个月、1打物品有12件)、六十进制(1小时有60分钟、1分钟有60秒)、二十四进制(一天有24小时)等等。由此,我们引入数制的概念(数制就是多位数码中每一位的构成方法以及从低位向高位的进位规则)。之后,提出问题:1+1=?很多同学可能会回答:2,王,这时我公布我的答案是10。学生可能会觉得奇怪,从而引入今天的课题——数制及其转换,并告诉学生通过今天的学

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值