有限元法求解二维Poisson方程的MATLAB实现
陈莲a,郭元辉b,邹叶童a
【摘要】文章讨论了圆形区域上的三角形单元剖分、有限元空间,通过变分形式离散得到有限元方程. 用MATLAB编程求得数值解,并进行了误差分析.【期刊名称】洛阳师范学院学报
【年(卷),期】2018(037)005
【总页数】4
【关键词】 Poisson方程;有限元方法; MATLAB编程;三角形单元剖分0 引言
热学、流体力学、电磁学、声学等学科中的相关过程,都可以用椭圆型方程来描述. 最为典型的椭圆型方程就是泊松方程[1]. 泊松方程在许多工程领域中有着广泛的应用,如它可以用来模拟半导体器件的静电过程. 在实际应用中,求解区域往往是不规则的,因此要想求出问题的解析解是非常困难的,很有必要研究其数值计算方法.
求解偏微分方程数值解常用的方法为有限差分法和有限元方法. 有限元方法是由20世纪50年代初的工程师们提出,其最初的数学思想是康托提出在三角形网格上用逐片线性函数去逼近Dirichlet边值问题[2]. 有限元方法[3-4]是基于传统的Ritz-Galerkin方法和有限差分方法优点的一种数值方法,相对有限差分方法它更擅长处理各种复杂区域,是求解偏微分方程数值解的一种有效方法. 基于此,结合MATLAB强大的数值计算能力和绘图功能,本文用有限元方法求解圆形区域上的泊松方程,通过MATLAB编程实现求解过程.
讨论二维Poisson方程