反比例函数
1.基础知识:一般的,我们把形如(k是常数,k≠0)的函数叫作反比例函数,其中,k叫做反比例系数。反比例函数图像叫做双曲线
反比例函数的变形:(k是常数,k≠0);
(k是常数,k≠0)
(乘积为定值) (指数为负一,若指数中含k,注意k≠0)
2.反比例函数(k是常数,k≠0)的性质:(结合图像记忆)
(与正比例函数的关系与区别)
(1)k>0,在各自象限内,y的值随x的值增大而减小
图像位于一、三象限
(2)k<0,在各自象限内,y的值随x的值增大而增大
图像位于二、四象限
(3)关于原点中心对称,关于y=±x轴对称(画图理解)
(4)的几何意义是在双曲线上一点向x、y轴作垂所得矩形面积
(面积问题常涉及,注意等积变换)
推理:(得出
开绝对值时注意正负(通过图像))
引申:当k>0时,双曲线上最接近原点的坐标是什么?
答:()(
)当k<0时呢?建议自行推理
(5)xy≠0,故图像与x,y轴无交点
1.反比例函数与正比例函数、一次函数结合
正比例:
1.交点坐标关于原点对称
2.比较y值大小时分四部分(两个交点横坐标的直线和y轴)
一次函数:
1.利用一个交点坐标代入求解析式再联立推另一个交点坐标
2.比较y值大小时分四部分(两个交点横坐标的直线和y轴)
4.反比例函数应用
1.观察乘积判断是否是反比例函数
2.注意取值范围
复习的时候可根据同步练习看自己的错题进行二次检查
二次函数的性质
1.a的意义
(1)a的正负决定开口方向
a>0开口向上,a<0开口向下
(2)a的绝对值决定开口大小
绝对值越大开口越小
2.a和b的意义 :a和b共同决定对称轴
左同右异,中间b为0
3.c的意义:c决定抛物线与y轴交点
c>0抛物线与y轴交于正半轴
c=0抛物线过原点
c<0抛物线与y轴交于负半轴
4.▲的意义:▲决定抛物线与x轴交点情况
▲>0两个交点
▲=0一个交点(顶点在x轴上)
▲<0无交点
5.最大(小)值
顶点纵坐标
6.增减性
a>0,对称轴左侧y随x的增大而减小
对称轴右侧y随x的增大而增大
a<0,对称轴左侧y随x的增大而增大
对称轴右侧y随x的增大而减小
7.二次函数与一元二次方程的关系
一元二次方程ax²+bx+c=0的解即为二次函数y=ax²+bx+c图像与x轴的交点横坐标
8.二次函数与一元二次不等式的关系
一元二次不等式ax²+bx+c>0(<、≥、≤)的解集即以二次函数y=ax²+bx+c图像与x轴的交点横坐标为临界点,取其范围
二次函数的应用
合理建系
设解析式(一般式、顶点式、双根式)
根据坐标系找已知坐标
代入解析式
利用解析式计算所求坐标
二次函数整理
1.基础概念
一般地,我们把形如y=ax²+bx+c(a≠0)的函数叫做二次函数,其中a是二次项 系数,b是一次项系数,c是常数项。
2.二次函数的图像
二次函数y=ax²+bx+c(a≠0)中,
a的正负决定抛物线开口的朝向
|a|的大小绝对开口的大小。|a|越大,开口越小
①y=ax²(a≠0)的形状是以原点为顶点、x=0为对称轴的抛物线
②y=ax²+c(a≠0)的形状是以(0,c)为顶点,x=0位对称轴的抛物线
它是由y=ax²(a≠0)向上(或向下)平移|c|个单位得到的
③抛物线y=a(x-h)²(a≠0)是以(h,0)为顶点,x=h为对称轴的抛物线
它是由y=ax²(a≠0)向左或向右平移|h|个单位长度得到的
④y=a(x-h)²+k(a≠0)(顶点式)的顶点是(h,k),对称轴是x=h,
它是抛物线y=ax²(a≠0)先向左或向右平移|h|个单位长度,
再向上或向下平移|k|个单位长度得到的
(口诀:左加右减自变量、上加下减常数项)
⑤y=ax²+bx+c(a≠0)的对称轴是x=-,顶点坐标是(-
)