seldom-platform:颠覆传统的自动化测试平台

seldom-platform:颠覆传统的自动化测试平台

seldom-platform是一个自动化测试平台,其特点是让会写代码的测试人员能够通过seldom框架高效地完成自动化用例的编写,并将剩下的事情交给平台来处理。它不仅充当了CI的角色,还可以对自动化项目做到用例级可视化管理。此外,该平台还具有零成本支持任何类型测试、降低平台开发的成本、平衡测试编写与管理等特点。

  1. seldom
    通过seldom框架编写自动化测试用例。
  2. Github/gitee 托管项目代码
    将代码托管到git平台,如github、gitlab、gitee或者私有git平台。
  3. seldom-platfrom
    通过seldom-platfrom平台解析用例,执行、查看结果、定时任务...

从上面的实现方案,seldom-platform​充当了CI​的角色,但是,又与CI​有很大不同,CI​ 支能配置命令来执行自动化项目。Seldom-Platform 可以对自动化项目做到用例级​可视化管理。除了不支持编写测试用例​(本来,编写测试用例也应该交给更擅长的框架​来做。)

平台特点

  • 零成本支持任何类型测试

当我们将编写用例这件事情交给 框架​ 来完成之后,那么平台可以几乎零成本的实现任何类型的测试: Web UI​、App UI​、HTTP​、WebSocket​、db数据库​ 等。然而,传统的自动化测试平台每种类型的测试都需要做专门的支持。

  • 降低平台开发的成本

当平台不再负责用例的编写,那么成本可以得到很大的降低。想象你要在平台上实现用例的创建、用例依赖、数据依赖,模块依赖。不同类型的测试交互也会有很大的差异,显然要付出不小的开发成本。

  • 平衡测试编写与管理

测试工程师可以自由的使用 seldom 框架编写自动化测试用例,同时,这并不会限制他技术成长。
测试管理者可以可视化的管理测试用例,查看、运行、统计等可以非常直观的管理用例。

相关项目

目前 seldom-platform 已经到 2.0 版本,重构了前端交互,提供更加友好的交互设计,以及更稳定的功能。

关注平台的更多使用细节,请访问开源项目,以及在线体验平台。

seldom-platform 开源平台:https://github.com/SeldomQA/seldom-platform

【资源说明】 1.项目代码功能经验证ok,确保稳定可靠运行。欢迎下载使用!在使用过程中,如有问题或建议,请及时私信沟通。 2.主要针对各个计算机相关专业,包括计科、信息安全、数据科学与大数据技术、人工智能、通信、物联网等领域的在校学生、专业教师或企业员工使用。 3.项目具有丰富的拓展空间,不仅可作为入门进阶,也可直接作为毕设、课程设计、大作业、初期项目立项演示等用途。 4.当然也鼓励大家基于此进行二次开发。 5.期待你能在项目中找到乐趣和灵感,也欢迎你的分享和反馈! 本文介绍了基于QEM(Quadric Error Metrics,二次误差度量)的优化网格简化算法的C和C++实现源码及其相关文档。这一算法主要应用于计算机图形学领域,用于优化三维模型的多边形数量,使之在保持原有模型特征的前提下实现简化。简化的目的是为了提高渲染速度,减少计算资源消耗,以及便于网络传输等。 本项目的核心是网格简化算法的实现,而QEM作为该算法的核心,是一种衡量简化误差的数学方法。通过计算每个顶点的二次误差矩阵来评估简化操作的误差,并以此来指导网格简化过程。QEM算法因其高效性和准确性在计算机图形学中广泛应用,尤其在实时渲染和三维打印领域。 项目代码包含C和C++两种语言版本,这意味着它可以在多种开发环境中运行,增加了其适用范围。对于计算机相关专业的学生、教师和行业从业者来说,这个项目提供了丰富的学习和实践机会。无论是作为学习编程的入门材料,还是作为深入研究计算机图形学的项目,该项目都具有实用价值。 此外,项目包含的论文文档为理解网格简化算法提供了理论基础。论文详细介绍了QEM算法的原理、实施步骤以及与其他算法的对比分析。这不仅有助于加深对算法的理解,也为那些希望将算法应用于自己研究领域的人员提供了参考资料。 资源说明文档强调了项目的稳定性和可靠性,并鼓励用户在使用过程中提出问题或建议,以便不断地优化和完善项目。文档还提醒用户注意查看,以获取使用该项目的所有必要信息。 项目的文件名称列表中包含了加水印的论文文档、资源说明文件和实际的项目代码目录,后者位于名为Mesh-Simplification-master的目录下。用户可以将这些资源用于多种教学和研究目的,包括课程设计、毕业设计、项目立项演示等。 这个项目是一个宝贵的资源,它不仅提供了一个成熟的技术实现,而且为进一步的研究和学习提供了坚实的基础。它鼓励用户探索和扩展,以期在计算机图形学领域中取得更深入的研究成果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值