eaxsinbx_第章 平面问题的极坐标解答-part.ppt

本文介绍了如何在极坐标系统中处理轴对称应力问题,包括应力函数、相容方程的运用,以及应力分量的坐标变换。通过实例演示了如何利用逆解法求解轴对称应力函数,讨论了轴对称性在应力和位移中的体现,以及如何通过特征根法求解相关微分方程。
摘要由CSDN通过智能技术生成

第章 平面问题的极坐标解答-part

* 绪 论 极坐标中的平衡微分方程 极坐标中的几何方程与物理方程 极坐标中的应力函数与相容方程 应力分量的坐标变换式 轴对称应力和相应的位移 圆环或圆筒受均布压力 圆孔的孔口应力集中 半平面体在边界上受集中力 半平面体在边界上受分布力 主要内容 §4.4 应力分量的坐标变换 由于应力分量不但具有方向性,而且与作用面有关,为了建立应力分量的坐标变换式,应取出包含两种坐标面的微分体,然后考虑微分体的静力平衡条件,可得出该变换式。 由一点的应力状态分析可知,由已知的直角坐标中的应力分量求极坐标中的应力分量,或者由已知的极坐标中的应力分量求直角坐标中的应力分量,就需要建立两个坐标系中应力分量的关系式,即应力分量的的坐标变换式。 应力分量的坐标变换 如图,当取厚度为1,包含x面、y面和径向坐标面的微小三角板A时,由微分体沿径向和环向两个方向的静力平衡条件,可得如下变换式: 同理,当取厚度为1,包含x面、y面和环向坐标面的微小三角板B时,由微分体的沿径向和环向两个方向的静力平衡条件,可得如下变换式: 应力分量的坐标变换 综上,可得应力分量由直角坐标向极坐标的变换式为: (4-7) 同理,如果考虑x和y方向的静力平衡条件,可导出应力分量由极坐标向直角坐标的的转换式: (4-8) 例  题 习题4-8:试考察应力函数       能解决如图所示弹性体的何种受力问题 x y O a 30° 30° a 例  题 按逆解法进行求解:通过求面力分析受力情况 (1)校核相容方程:应力函数代入式相容方程有 满足相容方程。 例  题 (2)求应力分量:将上式代入(4-9),得: 例  题 3、由应力分量反推出边界上的面力: 在边界 f=30°上: 在边界 f=-30° 上: 例  题 因此该应力函数能解的受力问题为(如图所示): 在边界 r=a 上: 课后作业 作业1:习题4-10 绪 论 极坐标中的平衡微分方程 极坐标中的几何方程与物理方程 极坐标中的应力函数与相容方程 应力分量的坐标变换式 轴对称应力和相应的位移 圆环或圆筒受均布压力 圆孔的孔口应力集中 半平面体在边界上受集中力 半平面体在边界上受分布力 主要内容 §4.5 轴对称应力和相应的位移 轴对称:物体的形状或物理量是绕一轴对称的,凡通过对称轴的任何面均是对称面。 由于对称,在对称面两边对应点的物理量必须满足如下两个条件   (1)数值必须相等:在极座标下,任一环向线上的各点的应力分量的数值相同。因此,它只能是径向坐标 r 的函数,不随环向坐标 f 改变,即与 f 无关。由此可见,凡是轴对称问题,总是使自变量减少一维。   (2)方向必须对称,即方向对称于z轴,方向不对称的物理量不能存在。 轴对称应力和相应的位移 (1)假设应力函数:应力是轴对称的,从方向的对称性可得 trj= tjr=0,由数值的对称性可知应力函数只是径向坐标的函数: 代入极坐标系中的应力公式(4-5) (4-9) 化简得: 按逆解法进行求解 轴对称应力和相应的位移 (2)由相容方程求应力函数的一般形式:上述应力函数必须满足相容方程,代入式(4-6)得: 其中A、B、C和D为四个待定常数。 方程为一个四阶常微分方程,其全部通解只有4项。上式积分4次,即得到轴对称应力状态下应力函数的通解: (4-10) (3)求应力分量:将公式(4-10)代入(4-9),得轴对称应力的应力分量为: 轴对称应力和相应的位移 对于平面应力情况,将上述应力代入物理方程(4-3),可求得相应的应变分量(见教材),它们也是轴对称。 将上面所求的应变分量代入几何方程(4-2),通过积分,可得到轴对称应力状态下的位移分量如公式(4-12),位移分量中包含了非轴对称的项。(详细过程见教材,并参考高等数学的有关常微分方程解的内容) (4-11) 以上是轴对称应力状态下,应力分量和位移分量的一般性解答(通解),适用于任何轴对称应力问题。 轴对称应力和相应的位移 应力解(4-11)和位移解(4-12)中的待定常数,可通过应力边界条件和位移边界条件(多连体中还须考虑位移单值条件)来确定。 将平面应力问题解答中的 E 和 m 作如下替换,可得平面应变问题的解答。 轴对称应力和相应的位移 一般而言,产生轴对称应力状态的条件是:弹性体的形状、体力和面力必须是轴对称的。由此得出的应力分量和应变分量是轴对称的。 轴对称应力状态的位移解不一定是轴对称的。但如果位移边界条件为轴对称,则位移也是轴对称的。 补充知识 一、n阶齐次常系数线性常微分方程的通解 其解可以用特征根法求解:即令y=elx代入上式,得到下列特征方程的解,从而得到原方程的n个解 特征方程的根 n阶齐次常系数常微分方程的通解 单重实根l elx 单重复根l=a±ib

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值