Abstract—In this paper, we intend to implement a
class of fractional differential masks with high-precision. Thanks
to two commonly used definitions of fractional differential for
what are known as Grünwald–Letnikov and Riemann–Liouville, we
propose six fractional differential masks and present the
structures and parameters of each mask respectively on the
direction of negative x-coordinate, positive x-coordinate, negative
y coordinate, positive y-coordinate, left downward diagonal, left
upward diagonal, right downward diagonal, and right upward
diagonal. Moreover, by theoretical and experimental analyzing, we
demonstrate the second is the best performance fractional
differential mask of the proposedsix ones. Finally, we discuss
further the capability of multiscale fractional differential masks
for texture enhancement. Experiments show that, for rich-grained
digital image, the capability of nonlinearly enhancing complex
texture details in smooth area by fractional differential-based
approach appears obvious better than by traditional intergral-based
algorithms.