- 博客(281)
- 收藏
- 关注
原创 Cohen–Grossberg神经网络
CGNN是由Cohen和Grossberg在1983年提出的经典神经网络模型,具有重要的理论价值。该模型通过微分方程描述神经元动力学特性,为神经网络研究奠定了基础。
2025-06-11 14:38:14
163
原创 20250531MATLAB三维绘图
%plot三维螺旋曲线x=2*t;y=sin(t);z=cos(t);可以通过指定输入向量来控制网格的大小。n = 20;% 指定网格的大小为 20×20% 生成包含49个点的向量,范围从-3到3% 生成49×49的网格坐标矩阵% 计算peaks函数在该网格上的值。
2025-06-01 02:27:24
958
原创 McCulloch-Pitts (MP) 数学模型
McCulloch-Pitts (MP) 数学模型由沃伦·麦卡洛克和沃尔特·皮茨于1943年提出,是神经科学和人工神经网络领域的重要基础。该模型将神经元简化为阈值逻辑单元,接收二进制输入信号(0或1),通过加权求和与预设阈值比较决定输出(0或1)。MP模型能够实现基本逻辑运算(如AND、OR、NOT),并可通过网络结构实现复杂计算,为后续神经网络研究奠定了基础。然而,MP模型存在局限性,如输出仅为二进制、忽略时间因素、缺乏自适应学习能力等。尽管如此,它仍是神经科学和人工智能领域的重要里程碑。
2025-05-19 17:29:10
832
原创 这些类型的差别分别是什么
特点:简要介绍在学术会议上发表的论文或演讲的内容。目的:向会议参与者提供即将展示的研究的概要。内容:通常包括研究背景、目的、方法、主要结果和结论。受众:会议组织者、参会者。评价:是会议论文的初步筛选材料,字数有限,通常经过简单的审核。
2025-05-13 10:49:36
303
原创 matlab 中function的用法
在 MATLAB 中,function 是用于定义函数的关键字。函数是一种封装了特定功能的代码块,可以接受输入参数,并返回输出结果。使用函数可以提高代码的可读性、可维护性和复用性。% 计算两个数的和与差endf = @sin;% 函数句柄指向 sin 函数y = f(x);% 调用函数句柄plot(x, y);% 输出 25在 MATLAB 中,function 是定义函数的关键字,函数可以接受输入参数并返回输出结果。通过合理使用函数,可以提高代码的可读性和复用性。
2025-05-01 15:21:24
1603
原创 数值分析、数值代数之追赶法
在 MATLAB 中,diag 函数用于处理矩阵的对角线元素或创建对角矩阵。3.提取指定偏移量的对角线元素。4.创建指定偏移量的对角矩阵。1.提取矩阵的对角线元素。
2025-04-27 22:02:44
561
原创 Dini 导数(Dini-derivative)
Dini 导数(Dini-derivative) 是数学分析中用于研究 不可微函数局部变化率 的工具,尤其适用于处理连续但不可微的函数。
2025-04-06 12:54:39
219
原创 membership grade
membership grade”这个术语的背景。它通常出现在模糊集合理论中,表示一个元素属于某个模糊集合的程度。这个概念和传统的二值逻辑不同,模糊集合允许元素的“部分隶属”,而不是非黑即白的“完全属于”或“完全不属于”。在模糊集合理论中,membership grade(隶属度)表示一个元素属于某个模糊集合的程度。它是一个介于0和1之间的值,0表示完全不属于,1表示完全属于,中间的值表示部分属于。例如,考虑模糊集合“温暖的天气”,温度25°C可能有0.8的隶属度,表示它在很大程度上属于“温暖的天气”;
2025-03-25 10:31:42
116
原创 几种常见的边界条件和初值条件的异同
边界条件和初值条件在微分方程求解中起着至关重要的作用。不同类型的边界条件和初值条件适用于不同的问题类型,选择合适的条件可以确保问题的解具有物理意义和数学上的合理性。
2025-03-04 10:49:23
1210
原创 Nabla 分数阶微积分定义
Nabla 分数阶微积分是时间尺度上的分数阶微积分,适用于离散时间系统。其定义基于向后差分算子(Nabla 算子)和分数阶积分。Nabla 分数阶微积分通过向后差分算子和广义二项式系数定义分数阶积分和微分,适用于离散时间系统的分数阶微积分分析。
2025-03-02 22:23:20
799
原创 分数阶微积分类型对比
Caputo 型分数阶微积分:基于求导后积分的定义,解决了 R-L 定义中初值条件不直观的问题。G-L 型分数阶微积分:基于差分思想,适用于离散和连续系统,与 R-L 定义在连续条件下等价。Caputo 型分数阶微积分:需要先计算整数阶导数,再进行分数阶积分,计算复杂度较高。R-L 型分数阶微积分:基于积分后求导的定义,是最早的分数阶微积分形式之一。Caputo 型分数阶微积分:具有与整数阶导数相似的初值条件,适合物理建模。R-L 型分数阶微积分:初值条件涉及分数阶积分,物理意义不直观。
2025-03-02 17:31:49
436
原创 全体n次单位根对于复数的乘法形成的一个群:n次单位根群
n次单位根是复数zzz,使得zn1z^n = 1zn1。zke2πiknzke2πikn其中k012n−1k012n−1iii是虚数单位。
2024-11-20 11:37:16
1366
原创 广义主从同步问题
广义主从同步问题(Generalized Master-Slave Synchronization Problem,简称GMLS)通常涉及两个或多个动态系统,其中一个系统作为“主系统”(master system),而其他系统作为“从系统”(slave systems)。目标是设计一种控制策略,使得从系统能够与主系统同步,即从系统的动态行为能够跟随主系统的行为。在这个问题中,主系统和从系统可能具有不同的动态特性,但通过适当的控制输入,可以使从系统的状态与主系统的状态保持一致或达到某种预定的同步关系。
2024-11-10 10:15:45
261
原创 Clifford数
代数在数学物理中有着重要的应用,尤其是在旋量理论中。它们被用来构造旋量群和旋量表示,这些在描述基本粒子的量子态时非常重要。代数中的元素,这些代数在数学和物理学中有着广泛的应用,特别是在描述空间的几何结构和物理中的旋量理论中。代数是一类结合代数,它们是实数或复数上的向量空间,并且具有特定的乘法规则。代数在数学的多个领域中都有应用,包括几何、拓扑和表示理论。代数的可逆元素构成一个群,称为。及其上的非退化二次型。群的一个子群,并且对。有一个自然的群作用。
2024-11-09 15:14:38
1039
原创 \( \mathfrak{A} \) 表示的是花体字母A
这会在文档中生成一个花体的A。LaTeX提供了多种字体样式,包括正体、斜体、粗体、花体等,以适应不同的数学表达需求。花体字母在数学中常用于表示特定的集合,例如代数数的集合通常用。表示的是花体字母A,通常用于数学中表示特定的集合或者函数。LaTeX是一种排版系统,广泛用于生成科学和数学文档,因为它能够很好地处理复杂的数学公式和符号。
2024-11-09 09:30:57
481
原创 参数失配(Mismatch)
参数失配的影响和解决方案在不同的应用领域有所不同。在模拟IC设计中,改善失配的通用设计原则包括使用器件参数的比值而不是绝对值来确定电路性能参数,以及通过合理的版图设计来减小同类型器件的不匹配程度。例如,在水声通信中,由于环境的复杂多变,可能会导致机器学习模型训练阶段和部署阶段的环境出现失配现象,进而影响模型的性能。参数失配(Mismatch)是指在电路设计和制造过程中,由于工艺偏差、材料特性的随机变化等因素,导致电路中相同类型器件的参数(如电阻、电容、晶体管的阈值电压等)与设计值或彼此之间存在偏差的现象。
2024-11-04 19:44:07
923
原创 综述期刊(Review Journal)
综述文章(Review Article)是一种学术论文,它对某一领域或主题的现有研究成果进行总结、分析和评述,而不是报告新的实验数据或原始研究结果。综述期刊在学术界扮演着重要角色,它们不仅帮助研究人员保持对最新研究动态的了解,还为跨学科研究提供了桥梁,促进了不同领域之间的交流和合作。:除了总结现有研究,综述文章还会对这些研究进行批判性分析,指出研究的局限性、不一致之处以及可能的改进方向。:综述文章为新进入该领域的研究人员提供指导,帮助他们快速了解领域的现状和发展趋势。
2024-11-04 16:09:35
676
原创 映射是到上的,即满射
在更具体的情况下,映射可以是一对一(Injective)的,这意味着定义域中的每个元素都映射到值域中的唯一元素,没有两个不同的元素映射到同一个元素;映射也可以是到上的(Surjective)或满射的,这意味着值域中的每个元素至少被定义域中的一个元素映射到;映射还可以是一对一且到上的,即双射(Bijective),这种情况下,定义域中的每个元素都唯一地映射到值域中的元素,并且值域中的每个元素都被定义域中的某个元素映射到。这意味着对于值域中的每一个元素,都至少有一个定义域中的元素映射到它。
2024-11-03 16:45:33
338
原创 变分法(Calculus of Variations)
变分法(Calculus of Variations)是数学的一个分支,主要研究函数的极值问题,即寻找一个函数,使得某个泛函达到最大值或最小值。泛函是将函数作为变量的函数,与通常的函数不同,泛函的变量是函数本身,而不是单个的数值。变分法在物理学、工程学、经济学等领域有着广泛的应用,特别是在最优化问题和控制理论中。
2024-11-03 10:30:26
1089
原创 条件数学期望
条件期望可以被解释为在概率空间中,一个随机变量在给定σ-代数上的正交投影。这意味着条件期望是σ-代数上所有随机变量中,与原随机变量的L^2距离最小的随机变量。条件数学期望是概率论中的一个重要概念,它描述了在给定某些信息(即一个或多个其他随机变量的值)的条件下,一个随机变量的期望值。:条件期望在实际问题中有很大用处,特别是在预测问题中,当已知一个随机变量的取值时,要据此去估计或预测另一个随机变量的取值。这些性质和定义构成了条件数学期望的核心概念,并在概率论和统计学中有着广泛的应用。的条件数学期望,记作。
2024-11-03 10:20:27
829
原创 数学期望~
对于一个离散随机变量X( X )X,其可能取值为x1x2xnx1x2xn,对应的概率为p1p2pnp1p2pn,数学期望EX( E(X) )EX))EX∑i1nxipiEX∑i1nxipi对于一个连续随机变量XXX,其概率密度函数为fxf(x)fx,数学期望EXE(X)EXEX∫−∞∞xfxdxEX∫−∞∞x。
2024-11-03 10:12:08
858
原创 连续和绝对连续的区别
连续和绝对连续是数学分析中的概念,它们描述了函数在定义域内的性质。简而言之,绝对连续是连续的一种特殊形式,它提供了更多的性质和更强的保证。
2024-11-02 21:33:35
1346
原创 拉普拉斯矩阵
拉普拉斯矩阵(Laplacian matrix),也称为基尔霍夫矩阵(Kirchhoff matrix),是图论中的一个概念,常用于描述图的结构特性。拉普拉斯矩阵在图论、网络分析、机器学习等领域有着广泛的应用。是度矩阵(对角矩阵,对角线上的元素是顶点的度数),之间存在一条边,则对应的非对角线元素。如果两个顶点之间没有边,则。相连的边的数量,即顶点。是边集合,拉普拉斯矩阵。,其对应的对角线元素。
2024-11-01 11:59:47
1602
原创 微分包含理论
时滞微分包含理论是非线性分析理论的重要分支,它的产生主要来自于控制论的发展和右端不连续微分方程的研究。微分包含理论起源于20世纪30年代,但直到60年代初,优化控制和微分方程理论研究才促进了微分包含理论的发展。微分包含的稳定性理论包括稳定、渐近稳定、一致稳定、一致渐近稳定以及指数稳定等概念,这些结果是常微分方程、泛函微分方程以及微分包含稳定性理论的推广和完善。微分包含系统的研究内容包括:它的不变集、回归集、吸引集、极限环、可达集的性质和计算,以及最优控制变量。表示了一个集合,而非空间中一个点。
2024-10-31 22:02:16
682
原创 拉普拉斯变换(Laplace Transform)
拉普拉斯变换的定义如下:给定一个实值函数ftf(t)ft,其拉普拉斯变换FsF(s)FsFsLft∫0∞e−stftdtFsLft)}∫0∞e−stftdt其中sss是一个复变量,ResσResσσ\sigmaσ是一个实数,它取决于函数ftf(t)ft,确保积分收敛。
2024-10-28 21:13:14
1916
原创 Hopfield网络
这种网络模型基于能量函数,通过迭代更新神经元的状态,最终达到能量的稳定状态,即网络的吸引子状态。总的来说,Hopfield网络是一种强大的模型,能够存储和恢复模式,在多个领域具有广泛的应用。离散型网络的神经元输出为-1或1,而连续型网络的神经元输出为(-1, +1)间的连续值。:最新的研究显示,基于物理体系的Hopfield网络理论上可以通过内在的物理过程实现自主学习,减少对外部计算资源的依赖。:Hopfield网络的记忆容量有限,且当记忆样本较接近时,网络可能无法始终回忆出正确的记忆。
2024-10-28 17:54:52
647
原创 Lebesgue可积
Lebesgue可积(Lebesgue integrable)是实分析和测度论中的一个概念,由法国数学家Henri Lebesgue在20世纪初提出。Lebesgue积分是Riemann积分的推广,它允许对更广泛的函数类进行积分,包括一些Riemann不可积的函数。
2024-10-20 15:42:33
1650
原创 Neumann边界条件
在实际应用中,诺伊曼边界条件的处理可能比狄利克雷边界条件(Dirichlet boundary condition,即指定函数在边界上的值)更复杂,因为它们涉及函数的导数。在数值计算中,诺伊曼边界条件的实现可能需要特别的考虑,以确保数值解的准确性和稳定性。例如,在热传导问题中,如果一个物体的边界上热流密度是固定的,那么这个边界条件就是诺伊曼边界条件的一个例子。例如,在波动方程中,诺伊曼边界条件可以表示为波动在边界上的法向导数为零,这意味着波动在边界上没有反射,波动的能量可以穿过边界。是我们要求解的函数,
2024-10-19 11:12:43
2672
原创 Cha4Caputo型分数阶微积分之超奇异性
在量子物理中,超奇异性可能与量子相变有关,例如在超流态到莫特绝缘态的量子相变中,全计数统计(Full Counting Statistics, FCS)在超流相中作为相位角的函数会表现出明显的尖点奇异性,而在莫特相中则是光滑的。在物理学中,分数阶导数的超奇异性可能与系统的某些非局部特性或者长程相互作用有关,这些特性在传统的整数阶导数中是不会出现的。在数学中,超奇异积分是一类特殊的积分,其积分核在积分区域的某些点上具有很高的奇异性,以至于不能直接用经典的数值积分方法进行计算。
2024-10-18 21:40:54
989
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人