时域上的乘积等于频域上的卷积_基于Spectral Graph Wavelet Transform的图卷积神经网络(上篇)...

04fd5811f7a49e08d017e9baf0e9b17e.png

(写在前面:由于这方面的内容,楼主在网上并没有看到有存在相关的中文资料,英文资料也零零碎碎的。所以才起了填补这个空白的念头,以下的内容均是在阅读了相当数量的资料后写的,加进去很多资料中跳跃省略的细节的解释,也对其中的数学推导进行了补充和勘误。本文并不是翻译性质的文章,个人觉得算是满满的干货吧,但毕竟作者水平有限,疏漏在所难免,希望大家能给予指正,共同完善我们的知识分享。更希望本文能给大家多多少少带来一些帮助)

a7b51900880d03e27204d7dc9796f0bd.png

上回说到,SGFT(Spectral Graph Fourier Transform)——谱方法图傅里叶变换,引发了卷积神经网络中,关于非欧式结构数据处理方法的一场新革命。基于谱方法的图卷积神经网络(Spectral Graph Convolutional Network)也应运而生,一时间大有文体两开...噢不,百花齐放的态势。但诚然新生力量有着席卷一切的朝气,却也不可避免地带有不够完备洗练的稚嫩。

归根到底,还是因为SGFT借以发家的压箱底的本事——傅里叶变换,本身具有一定的局限性。在这方面,信号处理专业出身的同学应该很有发言权(楼主本科读放射物理的...现已金盆洗手两年...捂脸遁)。

在时域上,傅里叶变换可以将信号分解成一组频率不同、频幅不同的三角函数信号的线性组合。我们知道,三角函数在整个时域上都是延伸的,那么,用一组无限延伸的信号去拟合一些局部突变的信号,必将劳民伤财,用很多个这种无限延伸的信号才可以勉强拟合得到,且拟合效果不佳,俗称事倍功半。当这个信号不在时域上,而是在graph上呢?graph上的傅里叶变换,同样将信号分解到一组相互正交的频率基上。只不过这组频率基,不是在整个时域上延伸,而是覆盖在整个graph上。同样地,当在graph上存在特征变化剧烈的区域时,傅里叶变换需要足够多的频率基来完成拟合,这就带来了巨大的分解冗余度。同时,由于每个频率基的“势力”都遍布整个graph,即是说:每个频率基的作用范围,都是graph上的所有顶点。这会导致的一个结果就是:当我们只需要聚焦于graph上的某个局部(甚至是某个顶点)时,我们获取到的信息,却都是来自全体顶点的贡献。这个道理其实很简单,你想一想就知道不合适了。打个比方,譬如我想了解你这个人的信息(graph上的某个顶点的特征),我去问你的一度人脉,二度人脉(graph上目标顶点的1-hop neighbors和2-hop neighbors),这还算合理。但我去问一个和你八竿子打不着的人(graph上离目标顶点很远的其他顶点),他给的信息有用吗?可靠吗?当然是没用,也不可靠。

因此,鉴于以上的不足,我们有必要探寻一个更优秀的Spectral GCN的引擎,或者说内核,使其可以解决这些由傅里叶变换带来的副作用。

小波变换就是一个优秀的候选者,它本质上是一种更为稀疏的信号编码方式,用更少的分量完成贴合度更高的拟合工作。我们同样用一个通俗易懂的例子来解释它的工作原理:现在,我们的目标是要在六个科目的卷子上拿到最高的总分。傅里叶小分队是这么一个人员构成:二十个各科目成绩均衡的尖子生。他们开起圆桌会议,大家群策群力共同做完这六个卷子;而小波小分队的人员构成则是:在这六个科目的全国竞赛中得到第一名的六个单科霸主。他们每个人都只负责自己擅长的那个科目的卷子,各做各的。当我们统计最后两队的总分时,会发现,大概率是小波小分队的总分更高。而当我们需要有人来为试卷上答错的题背锅时,小波小分队很清楚地就知道了哪个题是谁做的,因为只要知道是哪个卷子上的题,就等于知道了是谁做的。而傅里叶小分队就麻烦了,每个题都是大家讨论后得出的结果,锅会被分到每个人头上,尽管有些人是无辜的,他们在最终的决策中可能并没有做出贡献。

小波函数基(后面都称为小波基)相比于三角函数基(后面都称为傅里叶基)具有更好的局部性,即:每个小波基的作用范围,都只是其所在域中的一个局部区域。在graph中,就是只覆盖到一个局部区域中的那些顶点。因此,小波变换可以有的放矢,用更少的小波基去拟合原信号在整个分布上的各个局部(不管是平滑处,还是剧变处),同时,对于graph上的每个顶点而言,它将只存在于所有小波基中的少数几个之上而已,而这少数的几个小波基,对应的总作用范围,则只是该顶点所在的一个邻域,所以对这个顶点的特征有所贡献的,也就只有它邻域中的那些顶点。这就是我们想要的特性。

简单总结就是:小波基拳拳到肉,傅里叶基雨露均沾。我们再顺带说点有趣的科普,质子和电子在轰击人体组织时,在人体组织上的能量分布是不一样的,质子的能量会有个类似急刹车般的锐利的消失边缘,而电子的能量则是弥漫着逐渐消失,边缘模糊。质子的那个能量曲线,就是一个小波。

由小波变换催生出来的,就是下面要登场的这位新主角:SGWT(Spectral Graph Wavelet Transform)——谱方法图小波变换。为了便于区分,我们将当前流行的SGFT称之为传统的谱方法。利用这个新内核(SGWT)替换掉旧内核(SGFT)的卷积神经网络,就是新生的Spectral GCN了。

在神怪小说中,风云变幻里常有大人物降世,而我们的主角SGWT也是如此。若把小波域中的能量比作风,傅里叶域中的能量比作云,Parseval定理比作主宰天地变幻的规则,那么,我们可以看到,SGWT就是在这变换中诞生(推导)出来的。

如果我直接上SGWT的表达式,你们一定会骂我,根本没有这样的讲法。所以,我和自己说,写的时候,不要含糊其辞地糊弄过去细节,也不要避而不谈引申出的思考,我要让你们看到,我理解SGWT的时候看到的过程是这样的,你们看到的也是这样的。

鉴于父母从我们儿时就教育我们不能拿陌生人给的东西,所以,对于这种来历不明的公式,我们在拿来用之前,还是先弄清楚它的身世好。下面我们展开对SGWT的推导,如上所述,一切的开始,都要从Parseval定理说起。

Parseval定理,又称为Rayleigh能量定理,它从能量守恒的角度提供了一个等式约束,具体来说是指:一个平方可积的信号的能量,等于它在它所在的内积空间中的各个规范正交基上的投影分量的能量的总和。

这个约束常用于傅里叶变换上,即是说:一个时域信号的能量,等于其在频域上的各个分量的能量的总和。这里的基底即是一组相互正交的

和自身进行内积会得到一个冲激函数),而在各个基底上的投影分量则是其傅里叶系数。

傅里叶变换有多种不同的形式,如:连续时间傅里叶变换(CTFT)、离散时间傅里叶变换(DTFT)、连续时间傅里叶级数(CTFS)、离散时间傅里叶级数(DTFS)和离散傅里叶变换(DFT),这里只介绍和下述推导有关的形式:即连续时间傅里叶变换的Parseval定理。其公式如下:

其中,
为时域信号,
<
  • 1
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值