最近几年的中考对动点最值问题十分热,也是让考生最感头疼的问题。这不仅考察学生的数学想象力,同时也是对数学思维变化的一个综合检验。图形在动点的运动过程中观察图形的变化情况,需要理解图形在不同位置的情况,才能做好计算推理的过程,在变化中找到不变的性质是解决数学动点探究题的基本思路。这也是动态几何数学问题中的最核心的数学素养。动点问题往往涉及到到动点的轨迹,而动点的轨迹究竟是一个什么样的图形,这才是动点问题的一个核心问题。
动点问题主要的数学思想基本上是:分类讨论思想,函数思想,方程思想,数形结合思想,转化思想。
案例一:德州市2020年中考数学选择题压轴试题(中考数学中,一般选择题12道,第12题压轴;填空6道,第18题压轴;大题7道,第25题压轴)

本题的得分率十分低,基本上无人做对。究其原因,还是无法通过变化寻求不变,探寻出M点的轨迹。
对于此题我用几何画板先把M点的轨迹探寻出来

不难发现,M点的轨迹是一个圆。在考场上没有几何画板软件,就需要通过动点C,不断的寻找特殊点,通过动手画图,去寻找M点位置,然后,根据M点位置的变化,来想象推理出M点的轨迹。

由于BC是定值,C点是平面一点,可以确定C点到B(定点)的距离不变,由此推断出C点的运动轨迹是一个圆,在C点的运动过程中,M点也会随之发生变化,通过不断的绘图操作,可以发现M点的轨迹也是一个圆。

现在重点是探寻这个圆的圆心的问题。

我们知道圆心必须是一个定点,那么在C点的运动过程中,M点到哪个点的距离始终保持不变,这是本题的第二个关键点。
通过探寻不变量,我们依据M点的中点性质,很容易就发现圆心是AB中点,BC是定值,所以只有BC所在三角形的中位线才是不变的。
至此,现在我们就开始研究第三个关键点:什么时候OM最大。
我们连结轨迹圆的圆心N与M,NO,发现,无论是M点在何位置,都存在ON+OM>OM。

也就是只有ONM三点共线时,OM才是最大的。

这也符合圆外一点到圆上点最长距离的证明。
当推理到这里时,已经不难求出ON=AB/2 NM=BC/2 从而推出OM的最大值应该选B
案例二:

此题不难看出P点是被动点B带动的,所以我们可以改变B点 的位置,通过多画几个图来寻找P点的位置,从而推理P点的轨迹。

通过几何画板追踪点的轨迹,不难发现P点的轨迹是一条直线。
这样求PM最短也就是求M点到直线的最短距离——垂线段

动态几何的绘图,一般是由特殊到一般,先让动点移到几个特殊点,画出图形,然后,根据被动点的位置来寻找被动点的轨迹。所以要把握好一般与特殊的关和纱,分析过程中,特别要关注图形的特性(特殊角,特殊图形的性质、图形的特殊位置等)。动点问题一直是中考的热点,近几年考查探究动动中的特殊性:等腰三角形,直角三角形,相似三角形,平行四边形,梯形,特殊角或其三角函数,线段或面积的最值。