输出表格_魔兽世界怀旧服,盗贼各位置自然抗装,与输出装的对比选择表格,如何选择部位推荐...

本文介绍了魔兽世界怀旧服P5阶段安其拉神殿中盗贼如何准备自然抗性装备,强调了自然抗性在应对公主狂暴阶段的重要性。建议玩家在P5前至少堆叠135点自然抗性,以降低受到完全伤害的概率。内容包括装备选择、抗性计算、所需抗性数量以及额外准备,如饰品、药水和战术。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

cd80b6cd1b91bf4b9d660704e76c71d3.gif

P5眼看就要开了,稍微听到点消息的贼已经去准备自然抗了
一:各位置自然抗装,与输出装的对比

dc0d10d4c08aebcd5f8a40cbd768405f.png

注:
1.如果配了自然抗,面板降低后命中暴击收益降低,所以整体实际属性损失会比该数值略低。
2.表格对比的输出装为P4bis。如果身上是T1或者祖格蓝装,ap损失会大幅减小。
3.红色为损失最小的配装和附魔,蓝色略逊于红色。
4.划线装备要么收益低,要么难刷,要么AH被囤货,不做推荐。
5.手套只列出了剑贼,匕首贼在有狗皮的情况下没必要刷/买手套。
6.饰品目前只预定一个位置,另一个有可能是管家铃。考虑斩杀阶段收益大地之击完爆其他饰品。
二.我到底需要多少?
写这个的目的是让大家只做有意义的准备,盗贼再怎么样也是要打DPS的不是吗
众所周知,准备自然抗主要是应对公主的狂暴阶段。
但是贼的存活,还是要靠治疗。从治疗角度上说,尖刺伤害远比持续伤害可怕。
抗性一方面是降低平均伤害,另一方面的目的就是把尖刺伤害的可能降到最低。
群疗技能,不管是MS的祷言还是SM的链子,对群体的平均治疗是固定的,没有尖刺伤害的话,意外死亡的风险就低了很多,其他治疗就更有机会奶回来。a3259ddb00443ed41bfe6525ca840edf.png如图,我们需要避免的是受到完全伤害的可能。
对于63级目标,我们需要210抗性,即可将受到完全伤害的概率降低到1%
又因为P5开放披风15自然抗附魔,进本后猎人提供60点自然抗
所以P5之前,我们需要把抗性堆到135点以上,即可完成任务
根据上面的表格,按照收益自己挑挑拣拣凑出来135,等TAQ开门就行了。
三.我还需要准备什么?
自然抗药水,暗抗药奥抗药,大红绷带,有限无敌
猫鼬巨人火酒之类输出药,毒药磨刀石
两把快速匕首,1.3速最好
管家铃是否有用未知
如果召唤物有用,厄运开花苞出的荆棘幼崽的种子同样有用

2bf6366d856a65521a1f24f706bba30c.png

0b2d4430c02f3de616f26704daf5f570.gif 魔兽世界怀旧服P5前瞻系列◆ 安其拉神殿开荒 视频攻略及思维导图,强烈建议开荒团队配合图文攻略使用 ◆ 老古董翻出了旧宝贝,安其拉2006年图文攻略 ◆ 安其拉废墟Ruins of Ahn'Qiraj副本预习作业,6个BOSS,室外20人本 ◆ 如何最低成本5W金币得到黑甲虫及安其拉开门任务全流程介绍,附带2视频。 ◆ 魔兽世界怀旧服希利苏斯开风石装备一览,任务一览,三大极品野外就出◆T要准备的自然抗,无BUFF轻松270,装绑附魔占一半 ◆ 自然抗装备收集攻略,预测哈霍兰公主的难度会极大降低 ◆P5安其拉新增附魔图纸介绍 ◆P5五人本新增掉落  神像、圣契、图腾获取指南 ◆T0.5怎么兑换,详细任务流程一览 5696205b4af6a26f3fd9f5738032dbb5.gif

点下方留言更多人看到你的观点

“华为杯”第十八届中国研究生数学建模竞赛是一项全国性赛事,致力于提升研究生的数学建模创新实践能力。数学建模是将实际问题转化为数学模型,并运用数学方法求解以解决实际问题的科学方法。该竞赛为参赛者提供了展示学术水平和团队协作精神的平台。 论文模板通常包含以下内容:封面需涵盖比赛名称、学校参赛队号、队员姓名以及“华为杯”和中国研究生创新实践系列大赛的标志;摘要部分应简洁明了地概括研究工作,包括研究问题、方法、主要结果和结论,使读者无需阅读全文即可了解核心内容;目录则列出各章节标题,便于读者快速查找;问题重述部分需详细重新阐述比赛中的实际问题,涵盖背景、原因及重要性;问题分析部分要深入探讨每个问题的内在联系解决思路,分析各个子问题的特点、难点及可能的解决方案;模型假设符号说明部分需列出合理假设以简化问题,并清晰定义模型中的变量和符号;模型建立求解部分是核心,详细阐述将实际问题转化为数学模型的过程,以及采用的数学工具和求解步骤;结果验证讨论部分展示模型求解结果,评估模型的有效性和局限性,并对结果进行解释;结论部分总结研究工作,强调模型的意义和对未来研究的建议;参考文献部分列出引用文献,遵循规范格式。 在准备竞赛论文时,参赛者需注重逻辑清晰、论述严谨,确保模型科学实用。良好的团队协作和时间管理也是成功的关键。通过竞赛,研究生们不仅锻炼了数学应用能力,还提升了团队合作、问题解决和科研写作能力。
遗传算法优化BP神经网络(GABP)是一种结合了遗传算法(GA)和BP神经网络的优化预测方法。BP神经网络是一种多层前馈神经网络,常用于模式识别和预测问题,但其容易陷入局部最优。而遗传算法是一种模拟自然选择和遗传机制的全局优化方法,能够有效避免局部最优 。GABP算法通过遗传算法优化BP神经网络的权重和阈值,从而提高网络的学习效率和预测精度 。 种群:遗传算法中个体的集合,每个个体代表一种可能的解决方案。 编码:将解决方案转化为适合遗传操作的形式,如二进制编码。 适应度函数:用于评估个体解的质量,通常目标函数相反,目标函数值越小,适应度越高。 选择:根据适应度保留优秀个体,常见方法有轮盘赌选择、锦标赛选择等。 交叉:两个父代个体交换部分基因生成子代。 变异:随机改变个体的部分基因,增加种群多样性。 终止条件:当迭代次数或适应度阈值达到预设值时停止算法 。 初始化种群:随机生成一组神经网络参数(权重和阈值)作为初始种群 。 计算适应度:使用神经网络模型进行训练和预测,根据预测误差计算适应度 。 选择操作:根据适应度选择优秀个体 。 交叉操作:对选择的个体进行交叉,生成新的子代个体 。 变异操作:对子代进行随机变异 。 替换操作:用新生成的子代替换掉一部分旧种群 。 重复步骤2-6,直到满足终止条件 。 适应度函数通常以预测误差为基础,误差越小,适应度越高。常用的误差指标包括均方根误差(RMSE)或平均绝对误差(MAE)等 。 GABP代码中包含了适应度函数的定义、种群的生成、选择、交叉、变异以及训练过程。代码注释详尽,便于理解每个步骤的作用 。 GABP算法适用于多种领域,如时间序列预测、经济预测、工程问题的优化等。它特别适合解决多峰优化问题,能够有效提高预测的准确性和稳定性 。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值