最邻近插值(Nearest neighbor interpolation),双线性插值(Bilinear interpolation),双三次插值(Bicubic interpolation)

本文介绍了图像分辨率提升中常用的三种插值算法:最邻近插值、双线性插值和双三次插值。详细解释了每种算法的工作原理及应用,并通过公式展示了如何计算灰度图像的插值。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

图像插值算法

最近在写一个图像分辨率提高的算法,涉及到了图像插值算法,所以稍微调查了一下几种常用的简单算法,这里总结一下,后续继续学习更新。

最邻近插值(Nearest neighbor interpolation)

这里只用基本的灰度图来介绍。
D D D是目标图像的灰度,S是原本图像的灰度
D ( x , y ) = S ( [ x + 0.5 ] , [ y + 0.5 ] ) D(x,y) = S([x + 0.5],[y + 0.5]) D(x,y)=S([x+0.5],[y+0.5])

[ × ] [\times] [×]当中的小数应该四舍五入,或者也可以直接 + 1 +1 +1
也就是说,坐标四舍五入,然后取这个最近点的灰度值。

双线性插值(Bilinear interpolation)

双线性插值法使用相应位置周边的 2 × 2 2\times2 2×2的4个像素,采用线性插值,最后求出灰度值。
在这里插入图片描述
而双线性的含义则是上述这种线性估值方法在X方向和Y方向上执行两次。
在这里插入图片描述
公式如下
在这里插入图片描述
在这里插入图片描述
X X X Y Y Y方向插值顺序无所谓,最后得到的结果是相同的。

双三次插值(Bicubic interpolation)

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值