计算机空间密铺,哪些正多面体能够密铺一个空间?

本文探讨了使用正多面体铺满三维空间的问题,根据欧拉定理和正多面体的特性,确定只有正六面体能够完成这一任务。作者指出,如果放宽条件,允许非正多面体参与,会出现更多可能的解决方案,并鼓励进一步的思考和专业解答。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

满意答案

这是一个很有意思的题目,我相信有数学家已有明确的答案算出来了,不过我想自己计算一下看看能不能得到答案。

首先题主的问题条件已经将多面体限定为“正多面体”。通过欧拉定理(平直的凸面体点线面之间的数量关系 边数+2=点数+面数)以及正多面体的定义(所有边长相等,所有面全等),可以求解得到所有的“正多面体只有5个(不包括点和球)”。

即:正四面体、正六面体、正八面体、正十二面体、正二十面体(怎么推理这个可以查各种资料,1997年山东高考化学卷最后一题求解一个化合物模型的时候用到了这个欧拉定理推论,由于我正是参加了当年高考,对这个题可以说是刻骨铭心的记忆深刻)。

那么,由于这个限定,能铺满空间的正多面体的答案也就只能从这5个里面验证了。正六面体不必多说,只要依次验证4、8、12、20。正如铺满平面需要多边形的内角和必须为360度的约数,由于要铺满空间,很容易得出多面体的面夹角(不是边夹角)也需要有对应的性质。

使用空间几何投影知识计算正多面体的面夹角,我暂时先只计算了正4面体和正8面体,面夹角分别为arcsin(2/3√3)和2arcsin(1/3√6),具体角度数字值我就不转换了,显然都不是能够让边夹角组成一个360的,12面体和20面体算也懒得算了……

因此正多面体应该只有正六面体一个能铺满空间。但如果不使用“正多面体”这个限定的话,那就答案多了。简单的思考,比如沿着正六面体斜对角切开成为两个四棱锥,那这个四棱锥是一个解;设想一个已经被正六面体铺满的空间是一个只有边搭成的框架(面都挖空),我们推压这个框架让它歪斜,歪斜后的六面体也是一个答案(这个六面体所有面都是三种不同的菱形之一),等等。

我也期待有更专业的回答出现,这里就做一个头脑风暴,到此为止咯:)

00分享举报

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值