1-10所有5个数的组合_组合数学学习笔记(四)

89d589bc16f6b6fbd7913ff5f5940b82.png

在上一章中,我们介绍了普通生成函数。在此基础上,我们说明了普通生成函数的两种应用方式——利用递推公式求通项以及进行多重组合问题的计数

更为细节地,生成函数为我们研究组合问题提供了更多可能性。我们得以利用生成函数相等来证明两个组合问题的计数过程相等。而对于一些复杂的求和式,我们也得以利用生成函数的乘积形式进行拆解。

普通生成函数虽然很有用,但是却面临一个问题:它能处理的问题范围有限。不知道读者在上一章介绍完普通生成函数后是否有如下疑问:我们要怎么处理多重排列问题的计数呢?多重排列问题是否也有对应的生成函数形式呢?这个问题可谓是切中要害。我们接下来介绍的指数生成函数事实上就是为了处理多重排列问题而生的。(在某种意义上,我们可以认为不同形式的生成函数是为了处理特定问题而被定义出来的。这样看来,我们是根据现有的问题来定义生成函数而非相反。)

定义:

数列

equation?tex=a_n 的指数生成函数定义为
equation?tex=f_e%28x%29%3D%5Csum_%7Bn%3D0%7D%5E%5Cinfty+%5Cfrac%7Ba_n%7D%7Bn%21%7Dx%5En+ ,今后我们会在指数生成函数的下标上加上
equation?tex=e 来避免与普通生成函数混淆。

在具体论证其与多重排列问题对应之前,我们同样地,先来介绍一些有用的性质,并且说明其在解递推方程方面的应用。

注意到:

指数生成函数的形式导数为

equation?tex=f%5E%7B%27%7D_e%28x%29%3D%5Csum_%7Bn%3D1%7D%5E%5Cinfty+%5Cfrac%7Ba_n%7D%7B%28n-1%29%21%7Dx%5E%7Bn-1%7D+%3D%5Csum_%7Bn%3D0%7D%5E%5Cinfty+%5Cfrac%7Ba_%7Bn%2B1%7D%7D%7Bn%21%7Dx%5En+

equation?tex=a_n 的指数生成函数的形式导数就是
equation?tex=a_%7Bn%2B1%7D 的指数生成函数!

再一次观察上式,我们又可以得到

equation?tex=f%5E%7B%27%7D_e%28x%29%3D%5Csum_%7Bn%3D1%7D%5E%5Cinfty+%5Cfrac%7Bna_n%7D%7Bn%21%7Dx%5E%7Bn-1%7D+ ,在两边同时乘以
equation?tex=x 后,得到
equation?tex=xf%5E%7B%27%7D_e%28x%29%3D%5Csum_%7Bn%3D1%7D%5E%5Cinfty+%5Cfrac%7Bna_n%7D%7Bn%21%7Dx%5E%7Bn%7D+ ,故
equation?tex=a_n 的指数生成函数的形式导数乘以
equation?tex=x 就得到
equation?tex=na_n 的指数生成函数!

对于指数生成函数,由于其分母上有

equation?tex=n%21 ,故形式导数的化简作用会比普通生成函数大得多,更多琐碎的结论就不在此陈述了。

与普通生成函数类似地,指数生成函数也有乘积形式,这也是我们不得不牢记的重要结论之一!

考虑

equation?tex=f_e%28x%29%3D%5Csum_%7Bn%3D0%7D%5E%5Cinfty+%5Cfrac%7Ba_n%7D%7Bn%21%7Dx%5En+%2Cg_e%28x%29%3D%5Csum_%7Bn%3D0%7D%5E%5Cinfty+%5Cfrac%7Bb_n%7D%7Bn%21%7Dx%5En+

那么

equation?tex=f_e%28x%29g_e%28x%29%3D%5Csum_%7Bn%3D0%7D%5E%5Cinfty+%28%5Csum_%7Bk%3D0%7D%5En+%5Cfrac%7Ba_k%7D%7Bk%21%7Dx%5Ek+%5Cfrac%7Bb_%7Bn-k%7D%7D%7B%28n-k%29%21%7Dx%5E%7Bn-k%7D%29%3D%5Csum_%7Bn%3D0%7D%5E%5Cinfty+%28%5Csum_%7Bk%3D0%7D%5En+C_n%5Ek+%5Cfrac%7Ba_kb_%7Bn-k%7D%7D%7Bn%21%7D+x%5En%29

所以:

equation?tex=f_e%28x%29g_e%28x%29 为数列
equation?tex=c_n%3D%5Csum_%7Bk%3D0%7D%5En+C_n%5Ek+a_kb_%7Bn-k%7D 的生成函数,这就是指数生成函数的乘积形式!

有了上述工具,我们已经能够解决很多求解递推公式的问题,而这些问题往往是普通生成函数难以做到的。

我们举出一个经典的例子来展示指数生成函数的应用:

例:求集合

equation?tex=%5Cleft+%5C%7B+1%2C2%2C...%2Cn+%5Cright+%5C%7D 的所有不同划分的个数
equation?tex=B_n
(显然是不计顺序的)。

解:

这个问题直接解决并不容易,我们尝试着寻找其递推关系并且由递推关系再尝试着求通项公式。

我们考虑划分中包含了元素

equation?tex=n 的那个子集
equation?tex=A ,设
equation?tex=A
equation?tex=k 个元素。

那么除去

equation?tex=n
equation?tex=k-1 个元素。那
equation?tex=k-1 个元素必定是从
equation?tex=%5Cleft+%5C%7B+1%2C2%2C...%2Cn-1+%5Cright+%5C%7D 中选取的。

所以:要生成

equation?tex=%5Cleft+%5C%7B+1%2C2%2C...%2Cn+%5Cright+%5C%7D 的所有划分,我们可以从
equation?tex=%5Cleft+%5C%7B+1%2C2%2C...%2Cn-1+%5Cright+%5C%7D 中选取
equation?tex=k-1 个元素,有
equation?tex=C_%7Bn-1%7D%5E%7Bk-1%7D 种方法;再将
equation?tex=A 外的元素进行任意不同的划分,有
equation?tex=B_%7Bn-k%7D 种方法。最后,
equation?tex=k 的取值可以为
equation?tex=1%2C2%2C...%2Cn ,我们关于
equation?tex=k 求和就找到了递推关系。

故我们得到:

equation?tex=B_n%3D%5Csum_%7Bk%3D1%7D%5EnC_%7Bn-1%7D%5E%7Bk-1%7DB_%7Bn-k%7D%2CB_0%3D1%2CB_1%3D1

我们发现:这个递推关系的形式是求和号之中为一个组合数乘以一个数列中项的形式,我们立马联想到:这和指数生成函数的乘积形式很相似!

因此,我们决定使用指数生成函数:

equation?tex=f_e%28x%29%3D%5Csum_%7Bn%3D0%7D%5E%5Cinfty+%5Cfrac%7BB_n%7D%7Bn%21%7Dx%5En

但是,注意到递推公式仍旧与指数生成函数的乘积形式略有出入,故我们要进行一些改动。

equation?tex=i%3Dn-k ,得到:
equation?tex=B_n%3D%5Csum_%7Bi%3D0%7D%5E%7Bn-1%7DC_%7Bn-1%7D%5E%7Bn-i-1%7DB_i

故我们得到:

equation?tex=B_%7Bn%2B1%7D%3D%5Csum_%7Bi%3D0%7D%5E%7Bn%7DC_%7Bn%7D%5E%7Bn-i%7DB_i

左侧数列生成函数就是形式导数

右侧数列生成函数为乘积形式,为

equation?tex=f_e%28x%29 与数列
equation?tex=a_n%3D1 的指数生成函数之积(显然为
equation?tex=e%5Ex

由等号两侧数列的指数生成函数相等,得到:

equation?tex=f_e%5E%7B%27%7D%28x%29%3De%5Exf_e%28x%29

结合初值条件解微分方程,得到:

equation?tex=f_e%28x%29%3De%5E%7Be%5Ex-1%7D

求出了生成函数后,我们如法炮制,将其展开,重新写为级数形式即可!

进行迭代的幂级数展开:

equation?tex=f_e%28x%29%3D%5Cfrac%7Be%5E%7Be%5Ex%7D%7D%7Be%7D%3D%5Cfrac%7B1%7D%7Be%7D%5Csum_%7Bk%3D0%7D%5E%5Cinfty+%5Cfrac%7Be%5E%7Bkx%7D%7D%7Bk%21%7D%3D%5Cfrac%7B1%7D%7Be%7D%5Csum_%7Bk%3D0%7D%5E%5Cinfty+%5Cfrac%7B1%7D%7Bk%21%7D%5Csum_%7Bn%3D0%7D%5E%5Cinfty+%5Cfrac%7B%28kx%29%5En%7D%7Bn%21%7D

交换

equation?tex=k%2Cn 的求和顺序,得到:

equation?tex=%3D%5Cfrac%7B1%7D%7Be%7D%5Csum_%7Bn%3D0%7D%5E%5Cinfty+%28%5Csum_%7Bk%3D0%7D%5E%5Cinfty+%5Cfrac%7Bk%5En%7D%7Bk%21%7D%29%5Cfrac%7Bx%5En%7D%7Bn%21%7D (注意不要忘了把
equation?tex=n%21 提出,因为是指数生成函数!)

equation?tex=B_n%3D%5Cfrac%7B1%7D%7Be%7D%5Csum_%7Bk%3D0%7D%5E%5Cinfty+%5Cfrac%7Bk%5En%7D%7Bk%21%7D

这个特别的数被称为Bell数,第

equation?tex=n 个Bell数表示
equation?tex=n 元集的所有不同划分个数
。在我们后面涉及Stirling数时,我们将会再介绍它们之间的关系。

相信读者至此对于指数生成函数有了初步的熟悉。接下来我们论证其与多重排列问题的对应

考虑多重集

equation?tex=S%3D%5Cleft+%5C%7B+n_1%5Ccdot+c_1%2C...%2Cn_k%5Ccdot+c_k+%5Cright+%5C%7D
equation?tex=a_r 为其
equation?tex=r -排列数。
equation?tex=f_e%28x%29 为指数生成函数,则我们下面论证:
equation?tex=f_e%28x%29%3D%281%2Bx%2B%5Cfrac%7Bx%5E2%7D%7B2%21%7D%2B...%2B%5Cfrac%7Bx%5E%7Bn_1%7D%7D%7Bn_1%21%7D%29%281%2Bx%2B%5Cfrac%7Bx%5E2%7D%7B2%21%7D%2B...%2B%5Cfrac%7Bx%5E%7Bn_2%7D%7D%7Bn_2%21%7D%29...%281%2Bx%2B%5Cfrac%7Bx%5E2%7D%7B2%21%7D%2B...%2B%5Cfrac%7Bx%5E%7Bn_k%7D%7D%7Bn_k%21%7D%29

考虑这个展开式中的

equation?tex=r 次项,必定具有
equation?tex=%5Cfrac%7Bx%5E%7Bi_1%7D%7D%7Bi_1%21%7D%5Cfrac%7Bx%5E%7Bi_2%7D%7D%7Bi_2%21%7D...%5Cfrac%7Bx%5E%7Bi_k%7D%7D%7Bi_k%21%7D 的形式,且要满足
equation?tex=i_1%2B...%2Bi_k%3Dr%2C0%5Cleq+i_1%5Cleq+n_1%2C...%2C0%5Cleq+i_k%5Cleq+n_k

则不妨将其写作

equation?tex=%5Cfrac%7Br%21%7D%7Bi_1%21i_2%21...i_k%21%7D%5Cfrac%7Bx%5Er%7D%7Br%21%7D

equation?tex=%5Cfrac%7Bx%5Er%7D%7Br%21%7D 的系数为
equation?tex=%5Csum%5Cfrac%7Br%21%7D%7Bi_1%21i_2%21...i_k%21%7D ,此处对于
equation?tex=i_1%2B...%2Bi_k%3Dr%2C0%5Cleq+i_1%5Cleq+n_1%2C...%2C0%5Cleq+i_k%5Cleq+n_k 的所有解求和。

而注意到

equation?tex=%5Cfrac%7Br%21%7D%7Bi_1%21i_2%21...i_k%21%7D 本身为多项式系数,表示了
equation?tex=%5Cleft+%5C%7B+i_1%5Ccdot+c_1%2C...%2Ci_k%5Ccdot+c_k+%5Cright+%5C%7D
equation?tex=r -排列数。

故将

equation?tex=S 的所有
equation?tex=r 元子集的排列数相加求和即得到的是
equation?tex=S
equation?tex=r -排列数。

equation?tex=f_e%28x%29
equation?tex=%5Cfrac%7Bx%5Er%7D%7Br%21%7D 的系数即为
equation?tex=S
equation?tex=r -排列数。

这一段论证告诉我们:

在求解多重集的排列问题时,我们可以类似于求解多重集的组合问题可以直接写出其普通生成函数一般地,直接地写出其指数生成函数。并且对应的

equation?tex=%5Cfrac%7Bx%5Er%7D%7Br%21%7D 的系数即为
equation?tex=S
equation?tex=r -排列数!
(注意千万别忘了分母的
equation?tex=r%21 这一项)

例:求

equation?tex=S%3D%5Cleft+%5C%7B+2%5Ccdot+c_1%2C%5Cinfty+%5Ccdot+c_2%2C3%5Ccdot+c_k+%5Cright+%5C%7D
equation?tex=4 -排列数。

解:

equation?tex=f_e%28x%29%3D%281%2Bx%2B%5Cfrac%7Bx%5E2%7D%7B2%21%7D%29%281%2Bx%2B%5Cfrac%7Bx%5E2%7D%7B2%21%7D%2B...%29%281%2Bx%2B%5Cfrac%7Bx%5E2%7D%7B2%21%7D%2B%5Cfrac%7Bx%5E3%7D%7B3%21%7D%29

考虑

equation?tex=x%5E4 系数,第一个括号若取
equation?tex=1 ,为
equation?tex=%5Cfrac%7Bx%5E4%7D%7B6%7D%2B%5Cfrac%7Bx%5E4%7D%7B4%7D%2B%5Cfrac%7Bx%5E4%7D%7B6%7D%2B%5Cfrac%7Bx%5E4%7D%7B24%7D

第一个括号若取

equation?tex=x ,为
equation?tex=%5Cfrac%7Bx%5E4%7D%7B6%7D%2B%5Cfrac%7Bx%5E4%7D%7B2%7D%2B%5Cfrac%7Bx%5E4%7D%7B2%7D%2B%5Cfrac%7Bx%5E4%7D%7B6%7D

第一个括号若取

equation?tex=%5Cfrac%7Bx%5E2%7D%7B2%7D ,为
equation?tex=%5Cfrac%7Bx%5E4%7D%7B4%7D%2B%5Cfrac%7Bx%5E4%7D%7B2%7D%2B%5Cfrac%7Bx%5E4%7D%7B4%7D

equation?tex=x%5E4 系数为
equation?tex=%5Cfrac%7B71%7D%7B24%7D

equation?tex=%5Cfrac%7Bx%5E4%7D%7B4%21%7D 系数为
equation?tex=71 ,求得。

关于指数生成函数,有时也能利用其特殊性质证明一些组合恒等式,但是由于这并非最重要的应用,故在此不多赘述了。

关于指数生成函数更多应用,请参考习题。事实上,类似于普通生成函数,我们也能够在多重排列问题的基础上为其增加许多限制条件,求得限制条件下的多重排列数(请读者务必自行思考与推广)

进行简单的总结的话:指数生成函数的应用与普通生成函数类似,主要用来求解递推方程以及处理多重集合的排列数问题

习题:(注意:以下习题故意地将要用到普通生成函数与要用到指数生成函数的问题混在了一起,请读者自己区分!)

1、

equation?tex=W%2CX%2CY%2CZ 组成的长度为
equation?tex=n 且有偶数个
equation?tex=W 的的字符串有多少?

2、

equation?tex=x_1%2B...%2Bx_4%3D4%2Cx_1%5Cleq+4%2Cx_2%3C9%2Cx_3%3C10%2Cx_4%3C10 ,且
equation?tex=x_2 为奇数,
equation?tex=x_3%2Cx_4 为偶数,求方程非负整数解个数。

3、

equation?tex=a%2Cb%2Cc 中可重复地选
equation?tex=n 个字母,至少
equation?tex=2
equation?tex=a+ ,有多少种不同字符串?

4、若一个集合

equation?tex=%5Cleft+%5C%7B++1%2C2%2C...%2Cn%5Cright+%5C%7D 上的置换
equation?tex=%5Csigma 使得
equation?tex=%5Cforall+i%3D1%2C2%2C...%2Cn%2C%5Csigma%28i%29%5Cneq+i ,则称其为一个全错位排列。请求出
equation?tex=%5Cleft+%5C%7B++1%2C2%2C...%2Cn%5Cright+%5C%7D 上的所有不同全错位排列个数。(从递推公式入手)

5、每位数字为奇数且

equation?tex=1%2C3 出现偶数次的
equation?tex=n 位数有多少个?

6、现有若干个大小相同的圆盘,摆放这些圆盘,使得每行的圆盘都连续地相互紧挨地摆放在一起,从第二行向上起,每个圆盘都在下方两个圆盘的正中间的上方(均相互外切)。现在第一行(最下方一行)有

equation?tex=n 个圆盘,求可能摆出的不同的形状数
equation?tex=a_n ?(递推公式入手考虑)

7、尝试着不利用生成函数的乘积形式,而采取将递推式直接代入指数生成函数的办法来求得Bell数的指数生成函数。(体会一下乘积形式有多么便利2333)

提示或解答:

1、提示:

多重排列,指数生成函数

equation?tex=f_e%28x%29%3D%281%2Bx%2B%5Cfrac%7Bx%5E2%7D%7B2%21%7D%2B...%29%5E3%281%2B%5Cfrac%7Bx%5E2%7D%7B2%21%7D%2B%5Cfrac%7Bx%5E4%7D%7B4%21%7D%2B...%29

equation?tex=%3De%5E%7B3x%7D%5Cfrac%7Be%5Ex%2Be%5E%7B-x%7D%7D%7B2%7D%3D%5Cfrac%7B1%7D%7B2%7D%28e%5E%7B4x%7D%2Be%5E%7B2x%7D%29%3D%5Csum_%7Bn%3D0%7D%5E%5Cinfty+%5Cfrac%7B4%5En%2B2%5En%7D%7B2%7D%5Cfrac%7Bx%5En%7D%7Bn%21%7D

故结果为

equation?tex=%5Cfrac%7B4%5En%2B2%5En%7D%7B2%7D

2、提示:

多重组合,普通生成函数

equation?tex=f%28x%29%3D%281%2Bx%2B...%2Bx%5E4%29%28x%2Bx%5E3%2B...%2Bx%5E7%29%281%2Bx%5E2%2B...%2Bx%5E%7B8%7D%29%5E2

考虑

equation?tex=x%5E4 系数,第一个括号固定为
equation?tex=1%2Cx%5E2%2Cx%5E4 ,得到
equation?tex=0x%5E4

第一个括号固定为

equation?tex=x ,得到
equation?tex=3x%5E4

第一个括号固定为

equation?tex=x%5E3 ,得到
equation?tex=x%5E4

故答案为

equation?tex=4

3、提示:

多重排列,指数生成函数

equation?tex=f_e%28x%29%3D%281%2Bx%2B%5Cfrac%7Bx%5E2%7D%7B2%21%7D%2B...%29%5E2%28%5Cfrac%7Bx%5E2%7D%7B2%21%7D%2B%5Cfrac%7Bx%5E3%7D%7B3%21%7D%2B...%29

equation?tex=%3De%5E%7B2x%7D%28e%5Ex-x-1%29%3De%5E%7B3x%7D-e%5E%7B2x%7D-xe%5E%7B2x%7D

equation?tex=%3D%5Csum_%7Bn%3D0%7D%5E%5Cinfty+%283%5En-2%5En%29%5Cfrac%7Bx%5En%7D%7Bn%21%7D-%5Csum_%7Bn%3D0%7D%5E%5Cinfty+2%5En%5Cfrac%7Bx%5E%7Bn%2B1%7D+%7D%7Bn%21%7D

得到结果为

equation?tex=3%5En-2%5En-n2%5E%7Bn-1%7D

4、解答:

equation?tex=%5Cleft+%5C%7B++1%2C2%2C...%2Cn%5Cright+%5C%7D 上的所有不同全错位排列个数为
equation?tex=a_n

考虑

equation?tex=S_n 中任意一个置换,它会使得恰好
equation?tex=k 个元素全错位,剩下
equation?tex=n-k 个元素不错位。

那么这样的置换共有

equation?tex=C_n%5Eka_k 个。

注意到

equation?tex=k 的取值可以是
equation?tex=0%2C1%2C...%2Cn ,故关于
equation?tex=k 求和后可以得到所有
equation?tex=n%21 个置换。

故有

equation?tex=n%21%3D%5Csum_%7Bk%3D0%7D%5EnC_n%5Eka_k

发现与指数生成函数乘积形式如出一辙!

设指数生成函数为

equation?tex=f_e%28x%29 ,则
equation?tex=%5Cfrac%7B1%7D%7B1-x%7D%3Df_e%28x%29e%5Ex

解得

equation?tex=f_e%28x%29%3D%5Cfrac%7Be%5E%7B-x%7D%7D%7B1-x%7D

展开得到:

equation?tex=f_e%28x%29%3D%28%5Csum_%7Bn%3D0%7D%5E%5Cinfty+x%5En%29%28%5Csum_%7Bk%3D0%7D%5E%5Cinfty+%28-1%29%5Ek%5Cfrac%7Bx%5Ek%7D%7Bk%21%7D%29%3D%5Csum_%7Bk%3D0%7D%5E%5Cinfty+%28-1%29%5Ek%5Cfrac%7Bx%5Ek%7D%7Bk%21%7D%2B%5Csum_%7Bk%3D0%7D%5E%5Cinfty+%28-1%29%5Ek%5Cfrac%7Bx%5E%7Bk%2B1%7D%7D%7Bk%21%7D%2B...

equation?tex=%3D%5Csum_%7Bn%3D0%7D%5E%5Cinfty%28%5Csum_%7Bk%3D0%7D%5En+%5Cfrac%7B%28-1%29%5Ek%7D%7Bk%21%7D%29x%5En

equation?tex=a_n%3Dn%21%5Csum_%7Bk%3D0%7D%5En+%5Cfrac%7B%28-1%29%5Ek%7D%7Bk%21%7D 为全错位排列数!(注意不要忘了指数型生成函数中的系数不是
equation?tex=a_n 而是
equation?tex=%5Cfrac%7Ba_n%7D%7Bn%21%7D !)

一个有趣的性质是:

equation?tex=n%5Crightarrow%5Cinfty 时,全错位排列的发生概率趋向于
equation?tex=%5Cfrac%7B1%7D%7Be%7D

5、提示:

多重排列,指数生成函数

equation?tex=f_e%28x%29%3D%281%2Bx%2B%5Cfrac%7Bx%5E2%7D%7B2%21%7D%2B...%29%5E3%281%2B%5Cfrac%7Bx%5E2%7D%7B2%21%7D%2B...%29%5E2

equation?tex=%3De%5E%7B3x%7D%5Cfrac%7B%28e%5Ex%2Be%5E%7B-x%7D%29%5E2%7D%7B4%7D%3D%5Cfrac%7B1%7D%7B4%7D%28e%5E%7B5x%7D%2B2e%5E%7B3x%7D%2Be%5Ex%29

展开马上得到:答案为

equation?tex=%5Cfrac%7B5%5En%2B2%5Ccdot+3%5En%2B1%7D%7B4%7D

6、解答:

考虑第二行(从下往上)的情况。

第一种情况:压根没有第二行,有

equation?tex=1 种摆放方法。

第二种情况:第二行至少有一个圆盘。设第二行有

equation?tex=k 个圆盘,那么共有
equation?tex=n-k 种摆放方法。

equation?tex=k 可能取值为
equation?tex=1%2C...%2Cn-1

故得到:

equation?tex=a_n%3D%5Csum_%7Bk%3D1%7D%5E%7Bn-1%7D%28n-k%29a_%7Bk%7D%2B1

注意到具有普通生成函数的乘积形式,设普通生成函数为

equation?tex=f%28x%29

则经过化简可以得到:

equation?tex=f%28x%29%3D%5Csum_%7Bn%3D0%7D%5E%5Cinfty+%28%5Csum_%7Bk%3D1%7D%5En%28n-k%29a_k%29x%5En%2B%5Cfrac%7B1%7D%7B1-x%7D

从而得到:

equation?tex=f%28x%29%3D%5Cfrac%7Bx%7D%7B%281-x%29%5E2%7D%28f%28x%29-1%29%2B%5Cfrac%7B1%7D%7B1-x%7D

解得:

equation?tex=f%28x%29%3D%5Cfrac%7B1-2x%7D%7Bx%5E2-3x%2B1%7D

注意到分母上的二次函数有零点,故可化为部分分式(基本功):

equation?tex=f%28x%29%3D%5Cfrac%7B-5-2%5Csqrt%7B5%7D%7D%7B5%7D%28-%5Cfrac%7B%5Cfrac%7B2%7D%7B3%2B%5Csqrt%7B5%7D%7D%7D%7B1-%5Cfrac%7B2%7D%7B3%2B%5Csqrt%7B5%7D%7Dx%7D%29-%5Cfrac%7B5-2%5Csqrt%7B5%7D%7D%7B5%7D%28-%5Cfrac%7B%5Cfrac%7B2%7D%7B3-%5Csqrt%7B5%7D%7D%7D%7B1-%5Cfrac%7B2%7D%7B3-%5Csqrt%7B5%7D%7Dx%7D%29

然后进行幂级数展开就很方便啦!

得到

equation?tex=a_n%3D%5Cfrac%7B-%5Csqrt%7B5%7D%2B5%7D%7B10%7D%28%5Cfrac%7B3%2B%5Csqrt%7B5%7D%7D%7B2%7D%29%5En%2B%5Cfrac%7B%5Csqrt%7B5%7D%2B5%7D%7B10%7D%28%5Cfrac%7B3-%5Csqrt%7B5%7D%7D%7B2%7D%29%5En

7、提示:

equation?tex=f_e%28x%29%3D%5Csum_%7Bn%3D0%7D%5E%5Cinfty+%5Cfrac%7BB_n%7D%7Bn%21%7Dx%5En

我们的目的是证明与例题中相同的关系式:

equation?tex=f_e%5E%7B%27%7D%28x%29%3De%5Exf_e%28x%29 成立

那么不妨从左侧出发

equation?tex=f_e%5E%7B%27%7D%28x%29%3D%5Csum_%7Bn%3D1%7D%5E%5Cinfty+%5Cfrac%7B%5Csum_%7Bk%3D1%7D%5En+C_%7Bn-1%7D%5E%7Bk-1%7DB_%7Bn-k%7D%7D%7B%28n-1%29%21%7Dx%5E%7Bn-1%7D%3D%5Csum_%7Bn%3D1%7D%5E%5Cinfty+%5Csum_%7Bk%3D1%7D%5En+%5Cfrac%7Bx%5E%7Bk-1%7D%7D%7B%28k-1%29%21%7D%5Cfrac%7BB_%7Bn-k%7Dx%5E%7Bn-k%7D%7D%7B%28n-k%29%21%7D

注意:此处我们发现:含有

equation?tex=n 的项具有比较好的形式!

所以我们需要用到交换求和次序的技巧!(读者容易发现我在交换求和次序前后的求和在形式上是等价的)

equation?tex=%3D%5Csum_%7Bk%3D1%7D%5E%5Cinfty++%5Cfrac%7Bx%5E%7Bk-1%7D%7D%7B%28k-1%29%21%7D%5Csum_%7Bn%3Dk%7D%5E%5Cinfty+%5Cfrac%7BB_%7Bn-k%7Dx%5E%7Bn-k%7D%7D%7B%28n-k%29%21%7D%3De%5Ex%5Csum_%7Bk%3D1%7D%5E%5Cinfty++%5Cfrac%7Bx%5E%7Bk-1%7D%7D%7B%28k-1%29%21%7D%3De%5Exf_e%28x%29

由此我们证明了例中的关系式,后面我们如上进行即可。

指数生成函数的乘积形式大大简化了我们的运算!每当我们遇到数列本身就含有求和号的情况,我们都需要多思考能否将其转化到乘积形式,这样会带来极大的便利!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值