
在上一章中,我们介绍了普通生成函数。在此基础上,我们说明了普通生成函数的两种应用方式——利用递推公式求通项以及进行多重组合问题的计数。
更为细节地,生成函数为我们研究组合问题提供了更多可能性。我们得以利用生成函数相等来证明两个组合问题的计数过程相等。而对于一些复杂的求和式,我们也得以利用生成函数的乘积形式进行拆解。
普通生成函数虽然很有用,但是却面临一个问题:它能处理的问题范围有限。不知道读者在上一章介绍完普通生成函数后是否有如下疑问:我们要怎么处理多重排列问题的计数呢?多重排列问题是否也有对应的生成函数形式呢?这个问题可谓是切中要害。我们接下来介绍的指数生成函数事实上就是为了处理多重排列问题而生的。(在某种意义上,我们可以认为不同形式的生成函数是为了处理特定问题而被定义出来的。这样看来,我们是根据现有的问题来定义生成函数而非相反。)
定义:
数列



在具体论证其与多重排列问题对应之前,我们同样地,先来介绍一些有用的性质,并且说明其在解递推方程方面的应用。
注意到:
指数生成函数的形式导数为

故


再一次观察上式,我们又可以得到





对于指数生成函数,由于其分母上有

与普通生成函数类似地,指数生成函数也有乘积形式,这也是我们不得不牢记的重要结论之一!
考虑

那么

所以:


有了上述工具,我们已经能够解决很多求解递推公式的问题,而这些问题往往是普通生成函数难以做到的。
我们举出一个经典的例子来展示指数生成函数的应用:
例:求集合


解:
这个问题直接解决并不容易,我们尝试着寻找其递推关系并且由递推关系再尝试着求通项公式。
我们考虑划分中包含了元素




那么除去




所以:要生成









故我们得到:

我们发现:这个递推关系的形式是求和号之中为一个组合数乘以一个数列中项的形式,我们立马联想到:这和指数生成函数的乘积形式很相似!
因此,我们决定使用指数生成函数:

但是,注意到递推公式仍旧与指数生成函数的乘积形式略有出入,故我们要进行一些改动。
令


故我们得到:

左侧数列生成函数就是形式导数
右侧数列生成函数为乘积形式,为



由等号两侧数列的指数生成函数相等,得到:

结合初值条件解微分方程,得到:

求出了生成函数后,我们如法炮制,将其展开,重新写为级数形式即可!
进行迭代的幂级数展开:

交换



故

这个特别的数被称为Bell数,第


相信读者至此对于指数生成函数有了初步的熟悉。接下来我们论证其与多重排列问题的对应。
考虑多重集





考虑这个展开式中的



则不妨将其写作

故



而注意到



故将




故




这一段论证告诉我们:
在求解多重集的排列问题时,我们可以类似于求解多重集的组合问题可以直接写出其普通生成函数一般地,直接地写出其指数生成函数。并且对应的




例:求


解:

考虑



第一个括号若取


第一个括号若取


故


故


关于指数生成函数,有时也能利用其特殊性质证明一些组合恒等式,但是由于这并非最重要的应用,故在此不多赘述了。
关于指数生成函数更多应用,请参考习题。事实上,类似于普通生成函数,我们也能够在多重排列问题的基础上为其增加许多限制条件,求得限制条件下的多重排列数(请读者务必自行思考与推广)。
进行简单的总结的话:指数生成函数的应用与普通生成函数类似,主要用来求解递推方程以及处理多重集合的排列数问题。
习题:(注意:以下习题故意地将要用到普通生成函数与要用到指数生成函数的问题混在了一起,请读者自己区分!)
1、



2、
3、




4、若一个集合




5、每位数字为奇数且


6、现有若干个大小相同的圆盘,摆放这些圆盘,使得每行的圆盘都连续地相互紧挨地摆放在一起,从第二行向上起,每个圆盘都在下方两个圆盘的正中间的上方(均相互外切)。现在第一行(最下方一行)有


7、尝试着不利用生成函数的乘积形式,而采取将递推式直接代入指数生成函数的办法来求得Bell数的指数生成函数。(体会一下乘积形式有多么便利2333)
提示或解答:
1、提示:
多重排列,指数生成函数


故结果为

2、提示:
多重组合,普通生成函数

考虑



第一个括号固定为


第一个括号固定为


故答案为

3、提示:
多重排列,指数生成函数



得到结果为

4、解答:
设


考虑


那么这样的置换共有

注意到




故有

发现与指数生成函数乘积形式如出一辙!
设指数生成函数为


解得

展开得到:


故



一个有趣的性质是:


5、提示:
多重排列,指数生成函数


展开马上得到:答案为

6、解答:
考虑第二行(从下往上)的情况。
第一种情况:压根没有第二行,有

第二种情况:第二行至少有一个圆盘。设第二行有




故得到:

注意到具有普通生成函数的乘积形式,设普通生成函数为

则经过化简可以得到:

从而得到:

解得:

注意到分母上的二次函数有零点,故可化为部分分式(基本功):

然后进行幂级数展开就很方便啦!
得到

7、提示:

我们的目的是证明与例题中相同的关系式:

那么不妨从左侧出发

注意:此处我们发现:含有

所以我们需要用到交换求和次序的技巧!(读者容易发现我在交换求和次序前后的求和在形式上是等价的)

由此我们证明了例中的关系式,后面我们如上进行即可。
指数生成函数的乘积形式大大简化了我们的运算!每当我们遇到数列本身就含有求和号的情况,我们都需要多思考能否将其转化到乘积形式,这样会带来极大的便利!