五大联赛足球俱乐部标识图像数据集及深度学习应用

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:本数据集囊括了英超、西甲、意甲、德甲和法甲五大联赛共100个足球俱乐部的标识图像,总计100张图片。这些图像不仅可以用于训练计算机视觉模型识别和分类不同的足球俱乐部标识,也可用于构建深度学习模型如卷积神经网络(CNN)。数据集的构建涉及图像采集、标注和预处理等步骤,并在版权和隐私上有所考虑。此外,数据集还可用于图像检索或图像生成等更复杂的任务,并可与球员转会信息、比赛成绩等数据源结合,为球迷和足球产业提供更深入的分析和应用。 五大联赛的100个足球俱乐部的标识数据集,共100张图片

1. 足球俱乐部标识图像数据集

1.1 数据集的构建目的与意义

构建足球俱乐部标识图像数据集是计算机视觉研究中的一个重要步骤。这些图像数据集通常用于训练模型以识别和分类各种俱乐部的标识,对提升模型在实际足球比赛、媒体报道和社交平台等场景中的应用有显著帮助。数据集的丰富性和多样性直接影响到模型的训练效果和最终的应用性能。

1.2 数据集构建的基本步骤

首先,需要明确数据集的需求和目标,比如需要收集多少图像、图像的种类和特征等。接着,进行图像的采集工作,这可能涉及到从网上爬取、合作伙伴共享或自行拍摄。图像采集后,需要进行图像标注,这一步骤将图像与其代表的俱乐部标识进行匹配。数据预处理是对图像进行清洗、大小统一和增强等操作,以保证数据质量。最后,数据集需要进行维护更新,以确保持续提供高质量的训练材料。

1.3 数据集的版权与隐私问题

在构建和使用足球俱乐部标识图像数据集时,必须考虑到版权和隐私问题。俱乐部标识通常是商标,未经授权使用可能侵犯版权。因此,在采集图像时应确保合法来源,并对数据集的使用进行适当的版权标注和限制。同时,还需要对图像中可能涉及的个人隐私进行处理,如通过模糊化处理去除人物面部特征,确保符合隐私保护法规。

该章内容从数据集构建的目的、意义和基本步骤进行阐述,同时引入了版权和隐私问题,为读者构建了一个理解数据集重要性和使用规范的基础。接下来,第二章将深入探讨计算机视觉模型的训练与应用过程。

2. 计算机视觉模型训练与应用

2.1 图像采集、标注和预处理

2.1.1 图像采集过程与技术

在构建足球俱乐部标识图像数据集时,图像采集是第一步,也是至关重要的一步。图像采集通常涉及到选择合适的设备、设置拍摄参数以及组织拍摄过程。

首先,采集设备的选择取决于数据集的具体需求。例如,如果需要捕捉动态场景,高速相机可能更适合;而对于静态图像,则可以使用常见的数字单反相机或智能手机相机。现代智能手机的相机已经能够提供足够好的图像质量,这对于快速搭建一个初步的数据集尤其有用。

在设置拍摄参数时,必须确保所有图像在亮度、对比度、颜色平衡等方面具有一致性,以减少后续处理的难度。此外,对于拍摄位置和角度的规划也很重要,以确保关键特征如标志、球员服装、球门等在图像中清晰可见。

采集过程需要详细的计划和组织,比如如何安排拍摄时间、地点和人员。对于大规模数据集的构建,可能需要一个团队来管理不同的拍摄任务,确保采集到足够多样化的场景和条件。

采集到的原始图像通常需要经过预处理,例如裁剪、调整大小、去噪和转换为标准格式(如JPEG或PNG)。这些步骤有助于提高图像质量,并为后续的标注和分析工作做好准备。

2.1.2 图像标注的方法与工具

图像标注是将图像中的特定元素识别并标记的过程,是训练计算机视觉模型的关键环节。在足球俱乐部标识图像中,可能需要标注的元素包括球队标志、球员号码、训练设备、球场边界等。

标注工具的选择取决于项目需求和预算。简单的项目可以使用开源软件,如LabelImg或VGG Image Annotator (VIA)等。这些工具允许用户快速地在图像上绘制边界框,并为每个对象分配标签。

对于更复杂的任务,可能会选择使用更专业的标注平台,如LabelBox或CVAT。这些平台不仅提供了高级的标注功能,如多边形标注、3D点云标注等,还能够处理大规模数据集,并支持团队协作。

标注工作一般遵循以下步骤: 1. 确定标注规范:包括对象类别、属性以及标注样式等。 2. 分配标注任务:将图像分配给标注员,确保每个图像只被一人标注以保证一致性。 3. 标注执行:标注员使用工具对图像中感兴趣的元素进行标注。 4. 标注审核:审核人员检查标注质量并提供反馈。 5. 标注优化:根据反馈修正标注,确保标注准确无误。

标注工作的质量直接影响到模型训练的效果。因此,必须确保标注过程的准确性和规范性。

2.1.3 数据预处理的重要性与步骤

在图像进入模型训练阶段之前,数据预处理是一个必不可少的环节。预处理步骤包括但不限于标准化图像尺寸、归一化像素值、增强对比度、应用滤波器和噪声减少等。每个步骤都旨在提高模型训练的效率和效果。

标准化图像尺寸意味着将所有图像调整为统一的宽度和高度,这有助于确保模型在处理不同图像时的一致性。例如,在TensorFlow中可以使用以下代码块将图像尺寸统一到224x224像素:

import tensorflow as tf

def resize_image(image, new_width=224, new_height=224):
    image = tf.image.resize(image, [new_height, new_width])
    return image

# 假设 train_images 是一个包含多个图像的张量
train_images_resized = tf.map_fn(resize_image, train_images)

归一化像素值通常涉及将图像的像素值缩放到0到1的范围,通过减去最小值并除以最大值实现。这有助于模型更快地收敛,因为输入数据具有较小的数值范围。

对比度增强和噪声减少可以通过各种图像处理技术实现,如直方图均衡化、高斯模糊或中值滤波器。这些技术可以增强图像特征,使模型更容易识别和分类。

数据预处理步骤的实施不仅提高了模型的准确性,而且还能减少训练时间,使模型更快地收敛。下表总结了预处理步骤及其对模型训练的影响:

| 预处理步骤 | 目标 | 影响 | | --- | --- | --- | | 标准化图像尺寸 | 统一图像输入尺寸 | 提高模型训练的一致性 | | 归一化像素值 | 减少输入数据范围 | 加快模型收敛速度 | | 对比度增强 | 增强图像特征 | 提高模型识别能力 | | 噪声减少 | 清晰特征提取 | 提高模型准确性 |

数据预处理是准备高质量训练数据集的基础步骤,直接影响到模型训练的效率和最终性能。

3. 图像检索与生成任务

在现代社会中,图像检索和图像生成任务已经成为计算机视觉领域内非常重要的应用场景。图像检索使我们能够根据内容快速找到我们需要的图像,而图像生成技术则让我们能够创造出新的视觉内容。这两项技术都极大地推动了数字媒体的发展和信息的传播。

3.1 图像检索的实现与优化

3.1.1 基于内容的图像检索(CBIR)

基于内容的图像检索(Content-Based Image Retrieval, CBIR)是指通过计算机分析图像的内容特征(如颜色、纹理、形状等),并根据这些特征自动检索出相似或相关的图像。CBIR技术突破了传统基于文本标注检索的局限性,允许用户通过图像本身进行查询,大大提高了检索的直观性和效率。

在实现CBIR的过程中,关键步骤包括图像特征提取和特征匹配。

图像特征提取

图像特征提取通常涉及多个层面,每个层面提取的特征可帮助理解图像的不同方面:

  • 颜色特征 :颜色是图像中最直观的特征之一,常用的颜色直方图、颜色矩、颜色聚合向量(Color Coherent Vectors)等用于描述图像的颜色分布。
  • 纹理特征 :纹理反映了图像中像素值变化的模式,常用的纹理特征有灰度共生矩阵(GLCM)、局部二值模式(LBP)和Gabor滤波器响应。
  • 形状特征 :形状特征描述了物体的轮廓,例如形状上下文(Shape Context)和傅立叶描述符(Fourier Descriptors)。
特征匹配

特征匹配是检索过程的核心,它涉及比较数据库中的特征向量与查询图像特征向量之间的相似度。常用的相似度计算方法有欧氏距离、曼哈顿距离和余弦相似度等。

3.1.2 图像检索系统的性能评估

评估CBIR系统性能的主要指标是准确性和效率。准确性的指标包括查准率(Precision)和查全率(Recall)。查准率是指检索出的相关图像数量占所有检索出图像的比例;查全率是指检索出的相关图像数量占所有相关图像的比例。效率方面,通常关注检索时间和响应时间。

- **查准率** = (检索出的相关图像数量) / (检索出的所有图像数量)
- **查全率** = (检索出的相关图像数量) / (数据库中所有相关图像数量)
- **响应时间**:用户发出查询请求到检索结果返回的总时间

3.1.3 图像检索系统的优化策略

为了提升CBIR系统的性能,可以从以下几个方面进行优化:

  • 多特征融合 :不同的图像特征反映了图像的不同方面,通过结合多种特征来提高检索的准确性。
  • 改进特征匹配算法 :使用更高效的算法来提高匹配速度,如使用近似最近邻(Approximate Nearest Neighbor)技术。
  • 用户反馈机制 :允许用户对检索结果进行反馈,通过机器学习算法不断调整和优化检索模型。
  • 语义理解 :引入深度学习等先进技术,使计算机能更好地理解图像语义,提供更符合用户需求的检索结果。

3.2 图像生成技术与应用

3.2.1 生成对抗网络(GANs)简介

生成对抗网络(Generative Adversarial Networks, GANs)是一种深度学习模型,由两个网络组成:生成器(Generator)和判别器(Discriminator)。生成器负责生成尽可能真实的数据,而判别器的任务是区分真实数据和生成器产生的数据。

在图像生成任务中,GANs能够学习大量图像数据的分布,并生成新的、真实的图像。这项技术在艺术创作、虚拟形象设计、游戏场景生成等领域具有广泛的应用前景。

3.2.2 图像合成与风格迁移的应用

图像合成与风格迁移是GANs的两个典型应用。图像合成功能可以将多个图像元素组合成一幅新的图像,而风格迁移则能在保持内容不变的情况下,将一种艺术风格应用到其他图像上。

图像合成

图像合成功能通常用于数字娱乐和广告行业,允许用户组合不同的图像内容,创建出全新的视觉效果。例如,可以将动物的头和人类的身体结合,创造出想象中的“半人半兽”形象。

# 假设的GANs生成器代码示例
def generator(input_noise):
    # 使用深度学习框架定义生成器网络
    # input_noise是随机噪声输入
    # 通过网络层生成图片
    generated_image = model(input_noise)
    return generated_image
风格迁移

风格迁移技术在艺术创作和视觉设计中具有革命性的意义。通过这项技术,可以将梵高的绘画风格迁移到现代照片上,为用户提供前所未有的艺术体验。

# 假设的风格迁移代码示例
def style_transfer(content_image, style_image):
    # 使用深度学习框架定义风格迁移网络
    # content_image是内容图像
    # style_image是风格图像
    # 通过神经网络进行风格迁移
    transferred_image = model(content_image, style_image)
    return transferred_image

在实际应用中,GANs 的训练和应用需要大量的计算资源和专业知识,但随着技术的发展,这些技术正逐渐向大众化发展。

3.2.3 GANs的优化与挑战

GANs的优化和应用面临许多挑战,主要包括:

  • 训练稳定性 :GANs难以训练,经常发生生成器和判别器不协调的问题。
  • 模式崩溃 :生成器可能陷入只生成有限样本的困境,从而无法产生多样化的输出。
  • 真实感 :如何使生成的图像更加逼真,同时保持创意和多样性。

为了克服这些挑战,研究人员正在开发新的架构和技术,如Wasserstein GANs(WGANs)和BigGAN等。

通过这些优化,GANs在图像生成领域已经取得了突破性的进展,而且未来的发展潜力巨大,将会在艺术、娱乐和医疗等领域发挥更大作用。

在本章节中,我们探讨了图像检索和图像生成的基本概念、实现方法、性能评估以及优化策略,并通过代码示例和逻辑分析来具体展示相关技术的应用。接下来,我们将深入到第四章,探索版权和隐私问题在图像数据集中的应用。

4. 版权和隐私问题

4.1 版权法对数据集的影响

在构建足球俱乐部标识图像数据集的过程中,版权法为数据的使用和共享带来了诸多法律限制。随着技术的发展,数据集的创建和使用变得日益普遍,而版权法为创作者提供了保护,确保其作品不会被未经授权的复制、分发或改编。在使用图像数据集时,需确保遵守相关法律,避免侵犯版权,否则将面临法律责任和经济处罚。

4.1.1 数据集使用的法律限制

版权法赋予了图像创作者对其作品的独占权利,包括复制权、发行权、展示权和改编权等。在创建足球俱乐部标识图像数据集时,如果使用了受版权保护的图片,则需要获取版权持有者的授权。未经授权使用受版权保护的图像,可能会构成侵权行为。数据集制作者需要对版权法有一定的了解,并且在收集和使用图像时,要采取适当的措施以确保合法性。

4.1.2 遵循版权法的实践建议

为了确保版权法的遵循,数据集的制作者可以采取以下措施:

  1. 确保所使用的图像为公共领域或已经获得合适的授权。
  2. 在图像采集阶段,通过合约明确摄影师或图像创作者的授权范围。
  3. 对于图像进行版权信息的标记和追踪,确保可以追溯到原始的版权持有者。
  4. 在使用图像数据集时,为使用者提供版权声明,并明确使用范围和条件。
  5. 尊重和保护数据集内图像的道德权利,包括署名权和保持作品完整性的权利。

4.2 隐私保护在图像数据集中的应用

在处理包含个人识别信息的图像数据时,隐私保护是一项非常重要的考虑因素。隐私保护技术能够保护个人隐私不被泄露,从而维护公众的合法权益。在足球俱乐部标识图像数据集中,涉及球员、工作人员以及球迷的肖像可能被包含在内,因此,隐私保护是一个不可或缺的部分。

4.2.1 隐私保护技术和法规

隐私保护技术包括图像去标识化、差分隐私和数据匿名化等方法,它们能够去除或模糊图像中的个人信息,以减少隐私泄露的风险。相关法规如欧盟的通用数据保护条例(GDPR)对个人数据的保护提出了严格要求,要求数据处理者和控制者在数据收集、处理和存储过程中采取必要措施。

4.2.2 图像去标识化技术的应用

图像去标识化技术是一种有效保护图像中个人隐私的方法,它涉及以下步骤:

  1. 面部遮蔽 :使用面部识别算法检测图像中的面部,并用模糊或马赛克进行遮蔽。
  2. 图像模糊 :对图像中的非关键信息进行模糊处理,以去除能够识别个人身份的细节。
  3. 图像合成 :将非关键信息区域用合成图像代替,以避免泄露隐私信息。

对于那些难以自动识别的隐私区域,可以采用人工审核的方式进行去标识化处理,以确保隐私保护的完整性。

下面是应用图像去标识化的一个示例代码块,该代码利用了OpenCV库中的功能,对图像中的人脸进行自动检测并模糊处理,从而达到保护隐私的目的。

import cv2
import numpy as np

# 加载人脸识别模型
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')

# 读取图像
image = cv2.imread('path_to_image.jpg')

# 检测图像中的人脸
faces = face_cascade.detectMultiScale(image, scaleFactor=1.1, minNeighbors=5, minSize=(30, 30))

# 对检测到的人脸进行模糊处理
for (x, y, w, h) in faces:
    faceROI = image[y:y+h, x:x+w]
    faceROI = cv2.resize(faceROI, (300, 300), interpolation=cv2.INTER_AREA)
    faceROI = cv2.cvtColor(faceROI, cv2.COLOR_BGR2GRAY)
    faceROI = cv2.GaussianBlur(faceROI, (23, 23), 0)
    faceROI = cv2.resize(faceROI, (w, h), interpolation=cv2.INTER_AREA)
    image[y:y+h, x:x+w] = faceROI

# 显示处理后的图像
cv2.imshow('Processed Image', image)
cv2.waitKey(0)
cv2.destroyAllWindows()

在这个代码示例中,首先加载了OpenCV的面部识别模型,然后读取一张图像进行处理。利用 detectMultiScale 方法检测图像中的所有人脸,并通过 GaussianBlur 函数对每个检测到的人脸区域应用高斯模糊,以达到去标识化的目的。最后显示处理后的图像,所有检测到的面部将被模糊处理,以保护个人隐私。

通过以上章节的分析和介绍,可以看出版权和隐私问题是构建足球俱乐部标识图像数据集时必须认真考虑和妥善解决的。未遵守相关法律和隐私保护措施,将给数据集的创建者和使用者带来不可预测的风险和后果。

5. 足球数据分析平台构建

足球数据分析平台是一个集合了多种技术和算法的综合系统,它通过收集、处理和分析大量足球相关数据来提供洞察和预测,服务于球队决策、球迷互动和商业运营等多个方面。

5.1 数据平台的技术架构

构建一个高效的数据分析平台首先需要确定其技术架构,这包括硬件、软件以及数据处理和存储的策略。

5.1.1 数据平台的硬件与软件选择

在选择硬件和软件时,我们需要考虑数据的处理能力和系统的可扩展性。硬件方面,高性能的服务器是基础,包括高计算能力的CPU、大容量内存和高速存储设备。例如,可以选用搭载Intel Xeon处理器的服务器,配合32GB或更多的RAM以及SSD固态硬盘来提升处理速度。

软件方面,开源技术栈通常会是首选,以降低成本并利用社区支持。例如,可以采用Hadoop和Spark作为大数据处理框架,使用MySQL或MongoDB等数据库管理系统来存储数据。前端可视化可以利用D3.js、Chart.js等JavaScript库来实现。

5.1.2 数据处理与存储机制

数据处理包括数据清洗、转换和加载(ETL)等步骤。利用Apache Kafka进行实时数据流处理,以及Apache Spark进行批处理分析,可以高效地完成数据处理任务。数据存储机制应保证数据的安全性和易用性。可以结合使用关系型数据库和NoSQL数据库,比如MySQL负责结构化数据的存储,而MongoDB则处理半结构化或非结构化数据。

5.2 平台的交互界面与用户体验

良好的用户界面(UI)和用户体验(UX)设计是数据分析平台吸引用户的关键。

5.2.1 用户界面设计原则

UI设计应该简洁直观,使用户能快速找到所需功能并理解数据展现。遵循最小化设计原则,避免不必要的元素干扰用户的注意力。使用一致的设计模式和组件,保持整个平台风格统一,如按钮、输入框、列表等都有相同的设计语言。

UX设计注重用户的交互流程,数据平台应该通过向导、提示和反馈来引导用户完成任务。同时,界面设计需要考虑响应式布局,以适应不同设备的显示需求。

5.2.2 数据可视化在平台中的应用

数据可视化是数据平台的重要组成部分,它能将复杂的数据分析结果以图形的方式展现出来,帮助用户更快地理解信息。在足球数据分析平台中,可以使用折线图来展示球队胜负趋势,用热图来分析球员跑动热点,或者用雷达图来描述球员的各项技术统计数据。

5.3 数据分析与应用实例

数据分析是平台的核心功能,通过具体案例来展示其应用价值。

5.3.1 球队表现分析模型

利用历史比赛数据来构建球队表现分析模型。可以采用机器学习方法,比如随机森林或者支持向量机(SVM)来预测比赛结果。通过分析球队在过去比赛中的得分、失分、控球率、传球成功率等因素,模型能够对即将进行的比赛结果做出预测。

5.3.2 球迷行为分析案例研究

球迷行为分析能够帮助俱乐部了解球迷群体的喜好和行为模式,从而改善营销策略。通过收集球迷在社交媒体上的互动数据、购票记录以及在线观赛行为等数据,可以使用聚类分析来对球迷进行分群,进而推出个性化的观赛推荐或优惠活动。

数据平台的构建是一个复杂而多面的过程,它不仅仅包含技术实现,也涉及业务理解和用户需求的挖掘。通过不断地优化技术和用户体验,足球数据分析平台能够成为连接球队和球迷的重要桥梁。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:本数据集囊括了英超、西甲、意甲、德甲和法甲五大联赛共100个足球俱乐部的标识图像,总计100张图片。这些图像不仅可以用于训练计算机视觉模型识别和分类不同的足球俱乐部标识,也可用于构建深度学习模型如卷积神经网络(CNN)。数据集的构建涉及图像采集、标注和预处理等步骤,并在版权和隐私上有所考虑。此外,数据集还可用于图像检索或图像生成等更复杂的任务,并可与球员转会信息、比赛成绩等数据源结合,为球迷和足球产业提供更深入的分析和应用。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

### 基于Unity3D的ACT游戏的设计与实现 #### 摘要与关键词解析 本项目聚焦于使用Unity3D引擎开发一款2D动作类游戏(ACT),旨在为玩家提供沉浸式的游戏体验以及成就感。游戏开发过程中,作者不仅关注游戏的核心玩法,还深入探讨了如何利用Unity内置的各种工具和技术来提升游戏性能、改善用户体验。 **关键词**: - **Unity**:一个跨平台的综合游戏开发引擎,支持2D和3D游戏开发。 - **ScriptableObject**:Unity中的一种特殊脚本类型,用于存储数据和配置信息,方便在多个场景间共享。 - **游戏开发**:涵盖了游戏设计、编程、美术创作等多个方面的工作。 - **2D游戏**:指采用二维画面的游戏,相比3D游戏,具有更简洁的视觉风格和较低的技术门槛。 - **状态机**:一种常用的编程模式,用于管理游戏对象的状态转换,如角色的动作变化等。 - **Cinemachine**:Unity的一个插件,提供了高级的相机控制系统,能够创建出电影级的摄像机动画效果。 #### 第1章:绪论 在本章中,作者首先阐述了游戏开发的背景及意义。随着科技的进步,数字娱乐已经成为人们生活中不可或缺的一部分,而游戏作为其中的一种形式,更是受到了广泛的关注。游戏不仅能够提供娱乐,还能培养玩家的逻辑思维能力和解决问题的能力。因此,开发高质量的游戏产品显得尤为重要。 随后,作者介绍了本项目的起源和发展过程,包括为何选择Unity作为开发工具,以及项目的目标和预期成果。此外,作者还提到了Unity引擎的特点及其在游戏开发中的优势,比如跨平台兼容性、丰富的资源库、强大的社区支持等。 #### 技术选型与实现细节 1. **C#语言**:Unity主要使用的编程语言是C#,它是一种面向对象的语言,具有良好的可读性和扩展性。在本项目中,C#被用来编写游戏逻辑、实现用户交互等功能。 2. **UGUI和Text Mesh Pro**:UGUI是Unity提供的用户界面系统,可以轻松地创建各种界面元素,如按钮、滑块等。Text Mesh Pro则是一款高级文本渲染插件,能够提高文本的渲染质量和性能,使得游戏中的文字更加清晰易读。 3. **有限状态机**:状态机是一种常见的游戏开发模式,用于管理和控制游戏对象的不同状态。在本项目中,状态机被用来处理游戏角色的动作变化,例如攻击、跳跃、行走等。通过这种方式,可以更加高效地组织代码,提高游戏逻辑的清晰度和可维护性。 4. **ScriptableObject**:这是一种特殊的脚本类型,在Unity中主要用于存储数据和配置信息。通过ScriptableObject,开发者可以在编辑器中直接编辑这些数据,而无需重启游戏。这种机制极大地提高了开发效率,并且使得多人协作变得更加容易。 5. **物理系统**:Unity内置的物理引擎能够模拟真实的物理行为,如重力、碰撞等。在本项目中,物理系统被用来处理角色和环境之间的互动,确保游戏中的物理效果逼真可靠。 #### 测试与优化 为了确保游戏的质量,作者进行了多轮的测试,包括功能测试、性能测试以及玩家体验测试。通过不断地调整和优化,最终实现了游戏在低配置设备上的流畅运行。 **总结**: 通过上述分析可以看出,《基于Unity3D的ACT游戏的设计与实现》项目不仅关注游戏本身的玩法设计,还深入探讨了如何利用先进的技术和工具来提高游戏的品质。从技术选型到具体实现,再到后期的测试与优化,每一个环节都体现了作者的专业水平和对游戏开发的热情。对于想要进入游戏开发领域的初学者来说,该项目提供了一个非常好的学习案例。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值