空间滤波_基于空间变迹滤波旁瓣抑制与有序统计恒虚警率的舰船检测算法

该博客探讨了一种舰船检测的方法,结合了空间变迹滤波的旁瓣抑制技术与有序统计恒虚警率(CFAR)算法。通过旁瓣抑制流程图,阐述了如何有效地在复杂背景中检测舰船目标。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

fc0032b7d39747716487f048e537a0b2.png 点击蓝色 “雷达学报” 关注合成孔径雷达(SAR)具有全天时全天候的成像优势,在对海面舰船实时监测中极其重要。SAR主动发射线性调频信号,通过匹配滤波技术得到sinc函数波形的回波信号。因此舰船目标的旁瓣电平可能过高,甚至有可能跨越几十个甚至几百个像素点,从而严重影响后续的目标检测与识别过程。针对大场景海洋舰船检测与识别,识别舰船依赖于准确定位舰船提供适合的舰船图像进行分类。当舰船具有强烈旁瓣时,如果旁瓣连接另一舰船目标,可能导致这两个舰船被检测成一个舰船目标或者被检测成陆地目标。因此需要进行旁瓣抑制,但旁瓣抑制不可避免地影响成像结果,同时大场景下的旁瓣抑制的计算量对实时检测也有影响。针对这些问题,西安电子科技大学邢孟道教授团队利用高分三号(GF-3)中的高旁瓣舰船图像,提出了一种基于空间变迹滤波(SVA)旁瓣抑制与有序统计恒虚警率(OS-CFAR)的舰船检测算法。该工作拟发表在《雷达学报》2020年第2期“合成孔径雷达技术”专刊3“基于空间变迹滤波旁瓣抑制与有序统计恒虚警率的舰船检测算法”(黄寅礼,孙路,郭亮,孙光才,邢孟道,杨军,胡以华),现已网络优先出版。

c559c88eeabbb20431dc892cffb0830c.png

图1 旁瓣抑制流程图

本文利用高分三号图像进行实验,首先设置背景杂波模型为高斯模型,通过全局CFAR预筛选选出潜在目标点,然后修改了传统的SVA算法,使其只对潜在目标点进行旁瓣压制,减少了计算量,其抑制过程如(图1)所示;再利用OS-CFAR计算背景杂波参数,与分割阈值进行比较从而对每个潜在目标点进行分类。最后通过形态学膨胀操作,完善检测结果,如(图2)所示。实验结果证明该算法可以在高旁瓣舰船图像中准确定位舰船目标。

5fb16ac7cde08501f4352cfa78efdbbe.png

     图2 GF-3图像处理结果

了解详细内容请点击下面阅读原文

ec4a33c61a0062769421b8436e264500.png

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值