dtft频移性质,数字信号处理最新章节_原萍著_掌阅小说网

0a1f2b5b820c5370861b0abb5ca221b5.png

2.1 非周期序列的傅里叶变换(DTFT)

与连续非周期信号一样,离散时间非周期信号的频域分析涉及到傅立叶变换(也就是信号的谱)。傅里叶变换揭示了时域与频域之间的关系,本质上是建立以“时间”为变量的信号和以“频率”为变量的频谱函数之间的变换关系,下面讨论离散时间信号的傅里叶变换。

2.1.1 DTFT的定义

离散时间信号的傅里叶变换也用DTFT(Discrete Time Fourier Transform)来表示,其定义为

059f5e5bd288ab9f1ccf2c7bbecc87b0.png

其中,ω为数字频率,单位是弧度(rad)。X(e

)代表信号的频率内容,换句话说,它是信号x(n)的频率(正弦或余弦)分解。

DTFT成立的充分条件是序列x(n)绝对可和,即满足下式:

8595adac802cc8e1d0ba03ef791c2ad3.png

用e

jωm

乘式(2.1)两边,并在-π~π内对ω积分,同时考虑虚指数函数的正交性得

547b932f08fcc419852806e241e6f45d.png

4caec23e5fbc196548afe3dc3bd74192.png

将上式的m用n替换,因此

0bca3f524bec7ffe848de068611ad593.png

上式即是DTFT的反变换。式(2.1)和式(2.3)是一对傅里叶变换,叫做序列的傅里叶变换对。

【例2.1】

设x(n)=R

N

(n),求x(n)的DTFT。

1ac01da9014247e36637c91d24041f1b.png

当N=4,X(e

)的幅度与相位随ω变化曲线(幅度谱和相位谱)如图2.1所示。

b935c271bf29e0d23f06b91d72f9643a.png

图2.1 R

4

(n)幅度谱和相位谱

2.1.2 DTFT的性质

1.DTFT的周期性

在定义式(2.1)中,n取整数,因此下式成立:

94724e3fa4a622b203978ad68abf2ca8.png

因此,序列的傅里叶变换是频率ω的周期函数,周期是2π。对比连续信号的傅里叶变换,它同样表示了信号在频域的分布规律,但不同的是序列的傅里叶变换是以2π为周期的函数。在ω=0和ω=2πM附近的频谱分布应是相同的,在ω=0,±2π,±4π,…点上表示x(n)信号的直流分量,那么离开这些点愈远,其频率应愈高,但又是以2π为周期,那么最高的频率应是ω=π。还要说明的是,所谓x(n)的直流分量,是指如图2.2(a)所示的波形。例如,x(n)=cosωn,当ω=2πM,M取整数时,x(n)的序列值如图2.2(a)所示,它代表其直流分量;当ω=(2M+1)π时,x(n)波形如图2.2(b)所示,它代表最高频率信号,是一种变化最快的信号。由于DTFT的周期性,一般只分析±π之间或0~2π之间的DTFT就行了。

1365e8ab749054713706e434924d789d.png

图2.2 cosωn的波形

2.线性性

设X

1

(e

)=DTFT[x

1

(n)],X

2

(e

)=DTFT[x

2

(n)],那么

DTFT[ax

1

(n)+bx

2

(n)]=aX

1

(e

)+bX

2

(e

)

式(2.5)

式中a,b为常数。

傅里叶变换可以视为是对信号的一种运算,它是一个线性变换,线性性使得它适用于线性系统的分析。

3.时移性

设X(e

)=DTFT[x(n)],那么有

81a08799dd217a8bb831f9ce92cb0aa7.png

这个性质意味着一个信号在时域移动n

0

个采样,而它的幅度谱不变,只是相位谱改变了-ωn

0

4.频移性

设X(e

)=DTFT[x(n)],那么

0cbacdd85c8c2bc9c6d2d7eff0352104.png

5.对称性

在学习DTFT的对称性以前,先介绍什么是共轭对称与共轭反对称及其它们的性质

设序列x

e

(n)满足下式:

94db20c8ea8620546a1706bfc18773e9.png

则称x

e

(n)为共轭对称序列。当共轭对称序列是实数时,式(2.8)变为x

e

(n)=x

e

(-n),即x

e

(n)为偶对称序列。为研究共轭对称序列具有什么性质,将x

e

(n)用其实部与虚部表示:

x

e

(n)=x

er

(n)+jx

ei

(n)

将上式两边n用-n代替,并取共轭,得到:

9856bb6aa1cbb5223a682e0ba2642515.png

对比上面两公式,因左边相等,因此得到:

x

er

(n)=x

er

(-n)

式(2.9)

x

ei

(n)=-x

ei

(-n)

式(2.10)

由上面两式得到共轭对称序列其实部是偶函数,而虚部是奇函数。类似地,可定义满足下式的共轭反对称序列:

d32c72ec19f3ae861ea1ef889a62c391.png

当共轭反对称序列x

o

(n)是实数时有x

o

(n)=-x

o

(-n),即x

o

(n)为奇对称序列。将x

o

(n)表示成实部与虚部x

o

(n)=x

or

(n)+jx

oi

(n)同样可以得到:

x

or

(n)=-x

or

(-n)

式(2.12)

x

oi

(n)=x

oi

(-n)

式(2.13)

即共轭反对称序列的实部是奇函数,而虚部是偶函数。

【例2.2】

试分析x(n)=e

jωn

的对称性。

将x(n)的n用-n代替,再取共轭得到:

x

*

(-n)=e

jωn

因此,x(n)=x

*

(-n),故x(n)是共轭对称序列,如展成实部与虚部,得到:

x(n)=cosωn+jsinωn

上式表明,共轭对称序列的实部确实是偶函数,虚部是奇函数。

任意一个序列总可以表示成一个共轭对称和共轭反对称序列之和,即

4fdd54e4a58e1b90fe5b2fbe8e95fd54.png

其中,

0f968741d3f28101cf80e3605ab337d0.png

4d8984a50d5f5c6dbbdd9643c45d4057.png

同理,对于频域函数X(e

),也有和上面类似的概念和结论,即

f2443946b04d1207b20588ab98980f55.png

式中,X

e

(e

)与X

o

(e

)分别为共轭对称分量和共轭反对称分量,它们满足:

124422410337a9ec1a5ed1efcfafde5e.png

c95ae590443aa1e4bdee202b6e214df2.png

同样有下面式子:

d2342913f0e2486c4c3dcf339713b6c8.png

642853afe7058a600a1c006919f06a05.png

由以上的定义,可以得到DTFT的对称性了,下面按两部分进行分析。

(a)将序列x(n)分成实部x

r

(n)与虚部x

i

(n),即

x(n)=x

r

(n)+jx

i

(n)

将上式进行DTFT,得到

d60899136bddf7c2b90f44082dcf9b4c.png

acceb9ad3e63753863f5f6f3b92f6db3.png

上面两式中,x

r

(n)和x

i

(n)都是实数序列。容易证明:X

e

(e

)满足式(2.17),具有共轭对称性,它的实部是偶函数,虚部是奇函数;X

o

(e

)满足式(2.18),具有共轭反对称性质,它的实部是奇函数,虚部是偶函数。

最后得到结论:序列分成实部与虚部两部分,实部对应的DTFT具有共轭对称性,虚部和j一起对应的DTFT具有共轭反对称性。

(b)将序列分成共轭对称部分x(n)和共轭反对称部分x

o

(n),即

x(n)=x

e

(n)+x

o

(n)

将式(2.15)重写如下:

7373d660f3b0429104cf510cb2218f12.png

将上面两式分别进行DTFT,得到:

1c846331b5ebb1932e0f3451780ae8fd.png

因此对x(n)进行DTFT得到:

9724ee6f2b50940e639cd2285af35252.png

式(2.22)表示序列的共轭对称部分x

e

(n)对应着DTFT的实部X

R

(e

),而序列的共轭反对称部分x

o

(n)对应着DTFT的虚部(包括j)。

为了实际中可以利用序列对称性来简化傅里叶变换的计算,我们把上面讨论的结果概括为表2.1。

表2.1 离散时间傅里叶变换的对称性

f5317c9b02a7f6e192667ffb0e00e256.png

【例2.3】

一个实信号的傅里叶变换为

6fdc6288c754b9390b216c6f381b0c5b.png

确定X(e

)的实部、虚部、模和辐角,并画出当a为0.8的模和辐角的波形,从而验证对称性。

将X(e

)分子和分母分别剩以1-ae

得到:

10ae47d6643a4080066502f14530a1cc.png

则它的实部、虚部、模和辐角分别为:

c1779661244d0c5a4a34a966a75f7dc5.png

当a为0.8时实部和虚部的波形如图2.3所示。可见满足实信号谱的模和辐角的对称性。通过本例读者可自行验证实信号的谱的所有对称性都满足。

c5ae2d61cb5515157978108d77aedef1.png

图2.3 X(e

)的模和辐角图形

6.时域卷积定理

设 y(n)=x(n)*h(n),则

4a9f8e20712db93a06899fde62dc627c.png

证明

y(n)=x(n)*h(n)=

dc178f63a7c1d7d9d4e4b0c6c77b420c.png

x(m)h(n-m),那么

c7ca5245a52c4a95f23f75bf1d1492ba.png

令k=n-m,则

5430494a63871e0a02ef459cbffaac30.png

a4072d31231265db1fb708a908bc4ddd.png

该定理说明,两序列卷积的DTFT服从相乘的关系。对于线性时不变系统,输出的DTFT等于输入信号的DTFT乘以单位采样响应的DTFT。因此,在求系统的输出信号时,可以在时域用卷积公式(1.16)计算,也可以在频域按照式(2.23)求出输出的DTFT,再作逆DTFT,求出输出信号。

【例2.4】

已知两个序列x

1

(n)=x

2

(n)={1,

1

,1},利用时域卷积定理计算y(n)=x

1

(n)*x

2

(n)。

应用式(2.1)知x

1

(n)和x

2

(n)的DTFT为:

X

1

(e

)=X

2

(e

)=1+2cosω

那么Y(e

)=X

1

(e

)X

2

(e

)

=(1+2cosω)

2

=3+4cosω+2cos2ω

=3+2(e

+e

-jω

)+(e

j2ω

+e

-j2ω

)

所以两个序列的卷积y(n)={1,2,

3

,2,1}

7.频域卷积定理

设y(n)=x(n)h(n),则

6885e059bf66d036d686410f7aeeea76.png

edb5b2f8aa9c6141af59fe50a774e4eb.png

交换积分与求和的次序,得到:

c8731ef67c60f859ac0ff734a50ea925.png

该定理表明,在时域两序列相乘,转换到频域时服从卷积关系。

8.帕斯维尔(Parseval)定理

f276ce10b3273601b190e04de768972e.png

证明

889284a0e4578a6ad3146778f707ea52.png

71bbfaf12d32605bd3ed0593782d4c97.png

帕斯维尔定理表明了信号时域的总能量等于频域的总能量。要说明的是,这里频域总能量是指|X(e

)|

2

在一个周期中的积分再乘以1/2π。

傅里叶变换的上述这些性质有利于简化运算和求解,在许多实际应用中对降低分析的复杂性是非常有用的。

at+pUZrc3iAdkcl3/N8xxmMnyEM3G5T4+Uvt1eXPACa4TuaTUvYXEKtamtXT5ca/

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值