dtft频移性质,08 DTFT变换的性质

DTFT变换的性质

线性性质

\[

x[n]\xrightarrow{DTFT}X(e^{jw})\quad y[n]\xrightarrow{DTFT}Y(e^{jw})​

\]

\[

\begin{aligned}ax[n]+by[n]&\xrightarrow{DTFT}\sum_{n=-\infty}^{\infty}(ax[n]+by[n])e^{-jwn} \\

&=a\sum_{n=-\infty}^{\infty}x[n]e^{-jwn}+b\sum_{n=-\infty}^{\infty}y[n]e^{-jwn}\\

&=aX(e^{jw})+bY(e^{jw})

\end{aligned}

\]

时移性质

\[

x[n]\xrightarrow{DTFT}X(e^{jw})

\]

则\(x[n-n_0]\)的傅里叶变换为

\[

\sum_{n=-\infty}^{\infty}x[n-n_0]e^{-jwn}\xrightarrow{m=n-n_0}\sum_{m=-\infty}^{\infty}x[m]e^{-jwm}e^{-jwn_0}=e^{-jwn_0}X(e^{jw})

\]

频移性质

\[

x[n]\xrightarrow{DTFT}X(e^{jw})

\]

则\(e^{jw_0n}x[n]\)的傅里叶变换为

\[

\sum_{n=-\infty}^{\infty}e^{jw_0n}x[n]e^{-jwn}=\sum_{n=-\infty}^{\infty}x[n]e^{-j(w-w_0)n}=X(e^{j(w-w_0)})

\]

时域反转

\[

x[n]\xrightarrow{DTFT}X(e^{jw})

\]

则\(x[-n]\)的傅里叶变换为

\[

\sum_{n=-\infty}^{\infty}x[-n]e^{-jwn}\xrightarrow{m=-n}\sum_{m=-\infty}^{\infty}x[m]e^{-(-jw)m}=X(e^{-jw})

\]

时域微分

\[

x[n]\xrightarrow{DTFT}X(e^{jw})

\]

由于

\[

x[n]=\frac{1}{2\pi}\int_{-\pi}^{\pi}X(e^{jw})e^{jwn}dw

\]

两边同时对\(n\)进行微分运算

\[

\frac{dx[n]}{dn}=\frac{1}{2\pi}\int_{-\pi}^{\pi}jwX(e^{jw})e^{jwn}dw

\]

所以

\[

\frac{dx[n]}{dn}\xrightarrow{DTFT}jwX(e^{jw})

\]

频域微分

\[

x[n]\xrightarrow{DTFT}X(e^{jw})

\]

\[

X(e^{jw})=\sum_{n=-\infty}^{\infty}x[n]e^{-jwn}

\]

两边同时对\(w\)进行微分

\[

\frac{dX(e^{jw})}{dw}=\sum_{n=-\infty}^{\infty}-jnx[n]e^{-jwn}

\]

\[

\Rightarrow \sum_{n=-\infty}^{\infty}nx[n]e^{-jwn}= j\frac{dX(e^{jw})}{dw}

\]

所以

\[

nx[n]\xrightarrow{DTFT}j\frac{dX(e^{jw})}{dw}

\]

卷积性质

\[

x[n]\xrightarrow{DTFT}X(e^{jw})\quad y[n]\xrightarrow{DTFT}Y(e^{jw})

\]

则二者卷积的\(DTFT\)为

\[

\begin{aligned}

\sum_{n=-\infty}^{\infty}(x[n]*y[n])e^{-jwn}&=\sum_{n=-\infty}^{\infty}\sum_{m=-\infty}^{\infty}x[m]y[n-m]e^{-jwn} \\

&=\sum_{m=-\infty}^{\infty}x[m]\sum_{n=-\infty}^{\infty}y[n-m]e^{-jwn} \\

&\xrightarrow{k=n-m}\sum_{m=-\infty}^{\infty}x[m]e^{-jwm}\sum_{k=-\infty}^{\infty}y[k]e^{-jwk} \\

&=X(e^{jw})Y(e^{jw})

\end{aligned}

\]

调制定理

\[

x[n]\xrightarrow{DTFT}X(e^{jw})\quad y[n]\xrightarrow{DTFT}Y(e^{jw})

\]

则\(x[n]y[n]\)的\(DTFT\)为

\[

\begin{aligned}

\sum_{n=-\infty}^{\infty}(x[n]y[n])e^{-jwn} &=\sum_{n=-\infty}^{\infty}x[n]\frac{1}{2\pi}\int_{-\pi}^{\pi}Y(e^{j\theta})e^{j\theta n}d\theta e^{-jwn} \\

&=\frac{1}{2\pi}\int_{-\pi}^{\pi}\sum_{n=-\infty}^{\infty}x[n]^{-j(w-\theta)n}Y(e^{j\theta})d\theta \\

&=\frac{1}{2\pi}\int_{-\pi}^{\pi}Y(e^{j\theta})X(e^{j(w-\theta)})d\theta

\end{aligned}

\]

Parseval定理

\[

x[n]\xrightarrow{DTFT}X(e^{jw})\quad y[n]\xrightarrow{DTFT}Y(e^{jw})

\]

\[

\begin{aligned}

\sum_{n=-\infty}^{\infty}x[n]y^{*}[n]&=\sum_{n=-\infty}^{\infty}x[n](\frac{1}{2\pi}\int_{-\pi}^{\pi}Y(e^{jw})e^{jwn}dw)^{*} \\

&=\frac{1}{2\pi}\int_{-\pi}^{\pi}x[n]e^{-jwn}Y^{*}(e^{jw})dw \\

&=\frac{1}{2\pi}\int_{-\pi}^{\pi}X(e^{jw})Y^{*}(e^{jw})dw

\end{aligned}

\]

得到Parseval定理

\[

\sum_{n=-\infty}^{\infty}x[n]y^{*}[n]=\frac{1}{2\pi}\int_{-\pi}^{\pi}X(e^{jw})Y^{*}(e^{jw})dw

\]

如果\(y[n]=x[n]\),那么

\[

\sum_{n=-\infty}^{\infty}\vert x[n] \vert^2=\frac{1}{2\pi}\int_{-\pi}^{\pi}\vert X(e^{jw})\vert^2dw

\]

即序列\(x[n]\)的能量,可以通过对\(\vert X(e^{jw})\vert^2\)的积分求得,所以称\(\vert X(e^{jw})\vert^2\)为序列\(x[n]\)的能量谱密度。

标签:infty,变换,08,jw,jwn,DTFT,pi,sum

来源: https://www.cnblogs.com/LastKnight/p/10958021.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值