I have two lists of coordinates:
s1 = [(0,0), (0,1), (1,0), (1,1)]
s2 = [(3,2), (1,9)]
I want to calculate the minimum distance of each point in s1 to any point in s2. e.g. the results should be as follows.
result = [3.60, 3.16, 2.82, 2.23]
Question: What is the most optimized way in terms of execution time, to achieve this result?
So far I've tried this but the execution time is not promising:
import math
def nearestDistance(boundary, p):
minDistList = map(lambda b: (b[0] - p[0])**2 + (b[1] - p[1])**2, boundary)
minDist2 = min(minDistList)
return math.sqrt(float(minDist2))
d = []
for p in s1:
d.append(nearestDistance(s2, p))
Should I change the structure of s1 and s2 (instead of points use 2d arrays for example)?
解决方案
The easiest way is probably to use scipy.spatial.distance.cdist:
import numpy as np
from scipy.spatial import distance
s1 = np.array([(0,0), (0,1), (1,0), (1,1)])
s2 = np.array([(3,2), (1,9)])
print(distance.cdist(s1,s2).min(axis=1))
# array([3.60555128, 3.16227766, 2.82842712, 2.23606798])
Some more speed might be gained by directly outputting 0 for any point from s1 that is also in s2.