《(最新整理)结构动力学使用中心差分法计算单自由度体系动力反应的MATLAB程序》由会员分享,可在线阅读,更多相关《(最新整理)结构动力学使用中心差分法计算单自由度体系动力反应的MATLAB程序(14页珍藏版)》请在人人文库网上搜索。
1、完整)结构动力学使用中心差分法计算单自由度体系动力反应的MATLAB程序(完整)结构动力学使用中心差分法计算单自由度体系动力反应的MATLAB程序编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)结构动力学使用中心差分法计算单自由度体系动力反应的MATLAB程序)的内容能够给您的工作和学习带来便利。同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快 业绩进步,以下为(完整)。
2、结构动力学使用中心差分法计算单自由度体系动力反应的MATLAB程序的全部内容。12中心差分法计算单自由度体系动力反映的报告前言基于叠加原理的时域积分法与频域积分法一样,都假设结构在在全部反应过程中都是线性的。而时域逐步积分法只是假设结构本构关系在一个微小的时间步距内是线性的,相当于分段直线来逼近实际的曲线。时域逐步积分法是结构动力问题中研究并应用广泛的课题。中心差分法是一种目前发展的一系列结构动力反应分析的时域逐步积分法的一种,时域逐步积分法还包括分段解析法、平均常加速度法、线性加速度法、Newmarket-和Wilson-法等。中心差分法(central difference method)。
3、原理 中心差分法的基本思路将运动方程中的速度向量和加速度向量用位移的某种组合来表示,将微分方程组的求解问题转化为代数方程组的求解问题,并在时间区间内求得每个微小时间区间的递推公式,进而求得整个时程的反应。中心差分法是一种显示的积分法,它基于用有限差分代替位移对时间的求导(即速度和加速度).如果采用等时间步长,ti=t(t为常数),则速度与加速度的中心差分近似为ui=ui+1+ui-12t (1)ui=ui+1-2ui+ui-1t2 (2)用u表示位移,离散时间点的运动为:ui=uti,ui=uti,ui=uti (i=0,1,2)体系的运动方程为mut+cut+kut=P(t) (3)将速度和。
4、加速度的差分近似公式(1)和(2)代入(3)中得出在ti时刻的运动方程,将方程整理得到ui+1由ui和ui-1表示的两步法的运动方程(4):mt2+c2tui+1=Pi-k-2mt2ui-mt2-c2tui-1 (4)这样就可以根据ti及以前的时刻的运动求得ti+1时刻的运动。中心差分法属于两步法,用两步法计算时存在起步问题,必须要给出相邻的两个时刻的位移值,才能逐步计算.对于地震作用下结构的反应问题和一般的零初始条件下的动力问题,可以用(4)直接计算,因为总可以假设初始的两个时间点(一般取i=0,-1)的位移等于零。但是对应于非零初始条件或零时刻外荷载很大时,需要进行一定的分析,建立两个起步。
5、时刻(即i=0,-1)的位移值。假设给定的初始条件为u0=u0u0=u0 (5)根据初始条件来确定u-1。根据中心差分公式u0=u1+u-12tu0=u1-2u0+u-1t2 (6)