浙江大学计算机学院钱沄涛实验室,浙江大学导师介绍--钱沄涛

1968年出生,分别于1989年和1992年在西安交通大学获得自动控制专业学士和硕士学位,1996年3月在西安电子科技大学获得信号与信息处理专业博士学位,1996.4-1998.3在西北工业大学计算机科学与技术博士后流动站工作。1998年进入浙江大学计算机学院工作至今,2002年晋升教授,2003年聘为博士生导师。1999.8至2001.8在加拿大Concordia University和香港浸会大学做访问科学家,2006.3 至2007.1在Carnegie Mellon University计算机学院机器学习系访问教授。中国海洋大学兼职教授,中国体视学会理事,中国计算机学会人工智能专委会委员,IEEE会员,近年来主持和参加了国家自然科学基金、863、教育部留学回国人员基金、国家重点实验室开放基金、浙江省重点科技攻关项目等研究。发表论文50余篇,大部分被SCI和EI收录,近2年的主要论文:

1. Yuntao Qian, Robert Murphy, “Improved recognition of figures containing fluorescence microscope images in online journal articles using graphical models”, Bioinformatics, 24(4): 569-576, 2008. SCI

2. Sen Jia and Yuntao Qian. “Spectral and Spatial Complexity Based Hyperspectral Unmixing”. IEEE Transactions on Geoscience and Remote Sensing, 45(12): 3867-3879, December 2007. SCI

3. Guang Dai, Dit-Yan Yeung, Yuntao Qian, “Face recognition using a kernel-fractional-step discriminant analysis algorithm”, Pattern Recognition, 40(1): 229-243, 2007. SCI

4. Sen Jia and Yuntao Qian, “MRF-ICA mixture model for hyperspectral imagery unmixing”, International Journal of Wavelets, Multiresolution and Information Processing, 5(1): 113-127, 2007. SCI

5. 钱沄涛,“统计认知理论及应用研究”,心智与计算,1(3): 27-38, 2007.

6. 凌广杰,钱沄涛,“基于改进分段半马尔可夫模型的在线序列模式检测”,模式识别与人工智能,20(4):505-511, 2007.

7. Yuntao Qian, Xiaoxu Du, Qi Wang, “Semi-supervised hierarchical clustering analysis for high dimensional data”, International Journal of Information Technology, 12(3): 54-64, 2006.

8. Yao Chen, Yuntao Qian, “Semi-supervised dynamic counter propagation network”, ADMA 2006, LNAI 4093: 533-541, Springer. SCI

9. Guangjie Ling, Yuntao Qian, Sen Jia, “Segmental Semi-Markov Model Based Online Series Pattern Detection Under Arbitrary Time Scaling”, ADMA 2006, LNAI 4093: 731-740, Springer. SCI

10. Qiuhua Zheng, Yuntao Qian, Min Yao, “A Network Event Correlation Algorithm Based on Fault Filtration”, PRICAI 2006, LNAI 4099: 864 –869, Springer. SCI.

工作研究领域

机器学习,模式识别,图象处理

联系方式

电话:13819178382

电子信箱:ytqian@zju.edu.cn

浙江大学人工智能课程课件,内容有: Introduction Problem-solving by search( 4 weeks) Uninformed Search and Informed (Heuristic) Search (1 week) Adversarial Search: Minimax Search, Evaluation Functions, Alpha-Beta Search, Stochastic Search Adversarial Search: Multi-armed bandits, Upper Confidence Bound (UCB),Upper Confidence Bounds on Trees, Monte-Carlo Tree Search(MCTS) Statistical learning and modeling (5 weeks) Probability Theory, Model selection, The curse of Dimensionality, Decision Theory, Information Theory Probability distribution: The Gaussian Distribution, Conditional Gaussian distributions, Marginal Gaussian distributions, Bayes’ theorem for Gaussian variables, Maximum likelihood for the Gaussian, Mixtures of Gaussians, Nonparametric Methods Linear model for regression: Linear basis function models; The Bias-Variance Decomposition Linear model for classification : Basic Concepts; Discriminant Functions (nonprobabilistic methods); Probabilistic Generative Models; Probabilistic Discriminative Models K-means Clustering and GMM & Expectation–Maximization (EM) algorithm, BoostingThe Course Syllabus Deep Learning (4 weeks) Stochastic Gradient Descent, Backpropagation Feedforward Neural Network Convolutional Neural Networks Recurrent Neural Network (LSTM, GRU) Generative adversarial network (GAN) Deep learning in NLP (word2vec), CV (localization) and VQA(cross-media) Reinforcement learning (1 weeks) Reinforcement learning: introduction
校园失物招领微信小程序源码, 失物招领小程序主要为解决大学生时常丢失物品而且很难找回以及归还过程繁琐不方便的问题, 与传统的失物招领方式不同,该款校园失误招领小程序拥有快捷发布寻物启事和失误找领功能, 快速查找、极速归还、高效沟通、防误领冒领等功能, 在开发校园失物招领小程序前与用户访谈发现有近40的同学校园内频繁丢失物品、证件、校园卡等, 数码产品、日用品等,丢失区域主要发生在教学楼、图书馆和食堂。 拾领校园失物招领小程序继承了寻物启事和失物招领,丢失物品或拾取物品都可发布帖子, 首页的横幅滚动公告展示通知公告等,banner图片化的方式更具有视觉吸引力, 最新信息可显示最近发布的招领信息或寻物信息,更加方便快捷的展示信息, 用户可通过首页的发布按钮发布帖子,发布者只需填写物品的相关信息,类别、地点等相关信息, 并且可以填写手机号开启认领验证,并可以一键生成二维码分享或分享至群聊和朋友圈。 列表内可以筛选物品类别或精确搜索,物品详情里可展示物品的相关信息, 确认是自己的物品后可点击认领,然后验证信息,需填写物品的关键信息以作辨认, 防止冒领误领,物品详情页可生成二维码海报分享,还有即时的消息联系功能以提高沟通效率, 发布者还可选择放置在代收处,双方还可以通过拨打电话紧急联系,用于紧急情况,让失物找到主人, 个人中心可以管理发布的物品帖子,管理个人信息,包括昵称、默认学校、手机号的修改、 编辑发布的物品帖子、获取帮助等。帮助用户流畅的使用该小程序。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值