一只青蛙跳向三个台阶_一只青蛙跳出来的分治法、回溯法与动态规划

c5a3c7232f288fb4fe532d5666197834.png

本文来源于力扣圈子,作者:胡小旭,点击查看原文

力扣​leetcode-cn.com

从 2018 年 7 月份开始,基础薄弱的我从 0 开始刷力扣。目的性很明确,也很简单 —— 就是为了提高解决问题的思考实践能力,也为了提升自己的核心竞争力。也许,牛人会觉得这并不算什么竞争力。但这是我目前能做的比较基础的事情罢了。

截至 2018 年 12 月 28 日,我已经刷了 108 道题目。顺序基本上是按照面试题目出现的频率(Frequency)来刷的,这个频率在力扣上需要订阅会员后才可以看到。在刷了 108 道题目后,有一些题目会觉得 “似曾相识” ,也会有一种触类旁通的感觉。

进入正题。经过了 108 道题的历练之后,我来说说对于分治法、回溯法和动态规划的理解。

我觉得他们三者是一个相互有交集的概念,并不是相互完全独立的。至于为什么不是完全独立的,在分别阐述这三种方法的解决思路后,我们再总结一下。

一、分治法(Divide and Conquer)

分治法是解决规模庞大问题的很好思路,他通过降低问题的规模,形成若干个规模更小但形式相同的子问题,进行递归求解。在求解后,将各个子问题的解合并起来,形成原问题的解。

那么它的大致流程主要分成三步:

  • 分解(Divide)将大规模的问题分解成若干个规模更小但形式相同的子问题。
  • 解决(Conquer)如果当前问题的规模足够小,并可以直接解决的话,那么直接解决并返回解。否则,继续进行分解并递归求解分解后的子问题。
  • 合并(Merge)将各个子问题合并,最终形成原问题的解。

所以,明确了三步之后,还要明确一件事件 —— 实现方式:递归法。

分治法一般来说会采用递归法来进行实现,当然,利用迭代法(比如 for、while)也是可以的。

所以,我们往往看到的递归算法从广义上来说都是分治法。无非就是有些递归算法将问题分解了若干个子问题,然而有些递归算法将问题分解成了一个子问题。那么有些作者会称作前者是分治法,后者是减治法。

其实,这个概念真的非常重要。在面对很多问题的时候,都可以用这种思路去思考。那么其中思考的一个非常重要的一点就是递归算法中的边界(跳出)条件的判定。

只要我们想明白了求解子问题过程中的边界条件,那么问题就会很清晰,并且很容易写出程序来。否则,模糊的边界条件,会导致整个递归算法进入到“死循环”的尴尬地步。

举个例子

青蛙 跳台阶的问题:一只青蛙一次可以跳上 1 级台阶,也可以跳上 2 级。求该青蛙跳上一个 n 级的台阶总共有多少种跳法?

那么如果我们用分治法的思路思考的话,这道题真是非常容易理解。

首先,当青蛙在面对第一个台阶时,他只有两种选择 —— 跳一步还是跳两步。如果我们定义 f(n) 代表青蛙跳跃到 n 层台阶一共的方法数,那么我们可以将问题进行分解两个规模更小,但形式相同的问题:

C++

f(n) = f(n - 1) + f(n - 2)

其中 f(n-1) 是青蛙选择跳一步后,剩下的子问题,同理 f(n-2) 是青蛙选择跳两步后剩下的子问题。这样,我们就把问题进行了分解。

下面再谈谈如何解决,正如上面谈到的解决步骤,如果规模足够小那么直接返回,否则继续降低规模进行递归求解。这时,就是我们要确定边界条件——即当 n = 1 和 n = 2 时的情况。

在明确了边界条件后,合并就非常的简单,也就是简单的相加即可。

那么代码写出来是什么样子呢?

C++

#include <iostream> 
using namespace std;                                                                                                      
int f(int n) {          
// 边界条件(解决)   
if (n < 1) return 0; // 当台阶数目小于1时,那么就返回0种方案数量     
if (n == 1) return 1; // 当台阶数目为1时,问题的规模已经足够小,我们可以直接想出他的方案数量—— 即1种:1步    
if (n == 2) return 2; // 当台阶数目为2时,他的方案数量为2种,即—— 1步+1步,2步        
return f(n - 1) + f(n - 2); // 分解并合并     
}                                                                                                                                     
int main() {     
cout<<f(4)<<endl;    
return 0;           
} 

二、回溯法(Backtracking)

回溯法,我理解应该也可以叫做深度优先搜索(Depth-First Search)。所以,它是一种搜索算法。

既然谈到搜索,往往这里面会面临选择的情景。以那个青蛙为例,当面对第一个台阶时,他有两个选择。当他选择一种选择后,将“义无反顾”地一条道走下去,每层都会进行一次选择,直到走到第 n 层位置时。这时,青蛙已经触碰到了边界,并得到了一种方案,之后青蛙会返回到最近的上一次选择时的情景,选择第二种情况继续走下去。以此往复,直到搜索全部的情景。

是的,这非常的抽象。我们来看看用二叉树来描述运动轨迹是怎么样的。我们假设 n = 3。

颜色

  • 蓝色 代表当前搜索路走过的路径节点
  • 白色 代表没有搜索走过的节点
  • 红色 代表已经搜索过的节点,不可以再走

左右子树

  • 左子树 代表走一步
  • 右子树 代表走两步

回溯

如下图中红框标记的位置就是回溯到某一个情况。

如果你理解了下图的运动轨迹,我想差不多对于回溯的搜索过程就基本了解了。所以,你可以找到其他回溯点么?

4eb6a8073ff4f915914c018afbb381a2.png

理解了上图的运动轨迹后,那么,代码是什么样子呢?

C++

#include </iostream><iostream>                
using namespace std;                                                                                                               
/**        
 * int count 方案总数          
 * int target 目标—— 剩余的台阶数      
 */
void dfs(int& count, int target) {              
// 边界条件    
if (target < = 2) {    
        count += target; // 当剩余一个台阶是即累加一种方案,剩余两个台阶时累加两种方案             
return;        
    }                                                                                                                                
// 下面是两个基本点选择一步和选择两步        
// 选择一步      
    dfs(count, target - 1);                                                                                                                                   
// 选择两步        
    dfs(count, target - 2);     
}                                                                                                                                  
int main() {    
int count = 0;    
    dfs(count, 4);    
cout<<count<<endl;   
return 0;      
} 

边界条件

  • 剩余一个台阶时,累加一种方案
  • 剩余两个台阶时,累加两种方案

再说更重要的选择的两个基本点

  • 选择走一步
  • 选择走两步

以此进行递归搜索(深度优先搜索 DFS),在搜索到边界时进行回溯,以此往复直到搜索到所有情况为止。

三、动态规划(Dynamic Programming)

动态规划有两个重要的基本性质

最优子结构

如果一个问题的最优解包含了其中子问题的最优解,那么称其具有最优子结构的性质。

什么意思?青蛙在面对 n 台阶时的解决方案数是 f(n),那么我们知道 f(n) = f(n-1) + f(n-2)。其中的 f(n-1) 与 f(n-2) 就是两个子问题的最优解,此时我们可以理解成一个问题的最优解包含了其子问题的最优解,那么这个时候这种问题具有了最优子结构性质。

重叠子问题

这个性质,在我理解是对于上文提到的子问题的补充说明。当解决一个问题时,往往需要依赖于其更小规模的子问题的解,甚至是同时依赖于若干个规模更小的子问题的解,即子问题是被(重复)包含于比其更大的问题中的,所以他是具有重叠子问题的性质。

在这里,多提出一句,这个子问题是在解决当前问题时需要依赖的。即只有计算了子问题,父问题才可能被求解。这是和贪心算法的重要区别所在。

状态转移方程

C++

dp[i] = dp[i - 1] + dp[i - 2]
  • i 代表当前问题的规模,即所需要跳过的台阶数。
  • dp[i] 代表的是跳过 i 个台阶的方案数量

其实,看到这里我们会发现,根据动态规划和分治法的思路,其解决方案大致是一样的,这一点从其递归关系式和状态转移方程可以看出来。这也是我在前文说到的,分治法与动态规划有交集的一种情况的具体体现。

那么,实现动态规划的方式一共有两种

  • 递归法
  • 迭代法

其中递归法与分治法的解法是一样的,那么我们用迭代法来实现动态规划的思路。

C++

#include <iostream>
#include <vector>

using namespace std;                                                                                                               
int main() {     
int n = 4;      
vector<int> dp(n + 1, 0);     
    dp[1] = 1;    
    dp[2] = 2;                                                                                                                     
for (int i = 3; i < = n; ++i) {    
        dp[i] = dp[i - 1] + dp[i - 2];       
    }                                                                                                                              
cout<<dp[n]<<endl;     
return dp[n];  
} 

总结

通过上面的分析,我们发现其相互相交的共性:

  • 递归 动态规划、分治法与回溯法都可以使用递归的方式来实现
  • 子问题 分治法、回溯法与动态规划都利用了子问题的解进行决策

在我理解,上面的三种方式都是面对问题时的解决思路,这个思路非常重要。因为思路并不是针对某一个问题,而是某一类问题。在面对很多问题时,如果能够尝试用这几种思路去思考,会更容易、更顺利地解决问题。

最后,留一个坑,你觉得对于寻求一个整型数组的全排列的问题,能否分别用上述的方式来解决呢?

题目:给定无序整型数组 `nums = [1,2,4,2,-2,10]`,寻找所有的排列情况。即 `An1,An2...Ann`。

本文作者:胡小旭

声明:本文归作者版权所有,如需转载请联系。文章封面图来源于网络,为非商业用途使用,如有侵权联系删除。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值