分享一套学而思在线考试管理系统,附源码,亲测有效...

本文介绍了学之思在线考试系统,一个前后端分离的Java+Vue开发项目,涵盖登录、注册、试卷管理、考试记录等功能,并详细阐述了技术栈、架构和部署步骤。特别强调了代码的开放性和使用规定。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

点击上方[全栈开发者社区]右上角[...][设为星标⭐]

项目介绍

学之思在线考试系统是一款 java + vue 的前后端分离的考试系统。主要优点是开发、部署简单快捷、界面设计友好、代码结构清晰。目前支持web端和微信小程序,能覆盖到pc机和手机等设备。

开源版使用须知

  • 仅用个人学习

  • 禁止将本项目的代码和资源进行任何形式的出售,产生的一切任何后果责任由侵权者自负

学生系统功能
  • 登录、注册:注册时要选年级,过滤不同年级的试卷, 账号为student/123456

  • 首页:任务中心、固定试卷、时段试卷、可以能做的一部分试卷

  • 试卷中心:包含了所有能做的试卷,按学科来过滤和分页

  • 考试记录:所有的试卷考试记录在此处分页,可以查看试卷结果、用时、得分、自行批改等

  • 错题本:所有做错的题目,可以看到做题的结果、分数、难度、解析、正确答案等

  • 个人中心:个人日志记录

  • 消息:消息通知

  • 试卷答题和试卷查看:展示出题目的基本信息和需要填写的内容

管理系统功能
  • 登录:账号为:admin/123456

  • 主页:包含了试卷、题目、做卷数、做题数、用户活跃度的统计功能,活跃度和做题数是按月统计

  • 用户管理:对不同角色 学生、管理员 的增删改查管理功能

  • 卷题管理:

  1. 试卷列表:试卷的增删改查,新增包含选择学科、试卷类型、试卷名称、考试时间,试卷内容包含添加大标题,然后添加题目到此试卷中,组成一套完整的试卷

  2. 题目列表:题目的增删改查,目前题型包含单选题、多选题、判断题、填空题、简单题,支持图片、公式等。

  • 任务管理:对任务进行修改

  • 教育管理:对不同年级的学科进行增删改查

  • 答卷管理:查看学生成绩

  • 消息中心:可以对多个用户进行消息发送

  • 日志中心:用户的基本操作进行日志记录,了解用户使用过情况

  • 小程序功能
    • 用户登录登出功能,登录会自动绑定微信账号,登出会解绑

    • 首页包含任务中心、固定试卷、时段试卷、推送试卷模块,和web端保持一致

    • 试卷模块,固定试卷和时段试卷的分页查询,下拉加载更多,上拉刷新当前数据

    • 记录模块,考试结果的分页,包含了试卷基本信息

    • 我的模块,包含个人资料的修改,个人动态,消息中心模块

    技术栈列表

    后台系统:

    • spring-boot 2.1.6.RELEASE

    • spring-boot-security 用户登录验证

    • undertow web容器

    • postgresql/mysql 优秀的开源数据库

    • redis 缓存,提升系统性能

    • mybatis 数据库中间件

    • hikari 速度最快的数据库连接池

    • 七牛云存储 目前10G内免费

    前台系统:

    • Vue.js 采用新版,使用了vue-cli3搭建的系统,减少大量配置文件

    • element-ui 最流行的vue组件,采用的最新版

    • vue-element-admin 最新版,对该系统做了大量精简,只保留了部分样式和控件

    • echarts 图表统计

    • ueditor 填空题扩展插件

    微信小程序:

    • iView 主题样式

    使用教程

    1. redis 安装

    2. 进群获取到数据库脚本,创建表初始化数据

    3. /uexam/source/xzs为后台代码,建议使用IntelliJ IDEA打开,在application-dev.yml文件中,配置好postgesql/mysql、redis的服务地址,打开XzsApplication文件编译运行,默认端口为8000。

    4. 学生系统地址:http://localhost:8000/student

    5. 管理端地址:http://localhost:8000/admin

    软件架构图

    系统展示
    • 学生考试系统



    • 小程序考试系统

    • 后台管理系统



    获取源代码:后台回复“考试

    每日一练

    上万道面试题+大厂模拟面试+每日一练=【图灵题库】! 所有你想要的面试题,这里都有~

### 部署 Stable Diffusion 的准备工作 为了成功部署 Stable Diffusion,在本地环境中需完成几个关键准备事项。确保安装了 Python 和 Git 工具,因为这些对于获取源码和管理依赖项至关重要。 #### 安装必要的软件包和支持库 建议创建一个新的虚拟环境来隔离项目的依赖关系。这可以通过 Anaconda 或者 venv 实现: ```bash conda create -n sd python=3.9 conda activate sd ``` 或者使用 `venv`: ```bash python -m venv sd-env source sd-env/bin/activate # Unix or macOS sd-env\Scripts\activate # Windows ``` ### 下载预训练模型 Stable Diffusion 要求有预先训练好的模型权重文件以便能够正常工作。可以从官方资源或者其他可信赖的地方获得这些权重文件[^2]。 ### 获取并配置项目代码 接着要做的就是把最新的 Stable Diffusion WebUI 版本拉取下来。在命令行工具里执行如下指令可以实现这一点;这里假设目标路径为桌面下的特定位置[^3]: ```bash git clone https://github.com/AUTOMATIC1111/stable-diffusion-webui.git ~/Desktop/stable-diffusion-webui cd ~/Desktop/stable-diffusion-webui ``` ### 设置 GPU 支持 (如果适用) 当打算利用 NVIDIA 显卡加速推理速度时,则需要确认 PyTorch 及 CUDA 是否已经正确设置好。下面这段简单的测试脚本可以帮助验证这一情况[^4]: ```python import torch print(f"Torch version: {torch.__version__}") if torch.cuda.is_available(): print("CUDA is available!") else: print("No CUDA detected.") ``` 一旦上述步骤都顺利完成之后,就可以按照具体文档中的指导进一步操作,比如调整参数、启动服务端口等等。整个过程中遇到任何疑问都可以查阅相关资料或社区支持寻求帮助。
评论 22
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值