磁盘:
heads/sectors/cylinders,分别就是磁头/扇区/柱面,每个扇区512byte(现在新的硬盘每个扇区有4K)
文件系统:
文件系统不是一个扇区一个扇区的来读数据,太慢了,所以有了block(块)的概念,它是一个块一个块的读取的,block才是文件存取的最小单位。
文件系统中1个块是由连续的8个扇区组成。
HDFS:
默认文件大小64M(或者是128M)
hive小文件问题解决
问题描述
HDFS的文件元信息,包括位置、大小、分块信息等,都是保存在NameNode的内存中的。每个对象大约占用150个字节,因此一千万个文件及分块就会占用约3G的内存空间,一旦接近这个量级,NameNode的性能就会开始下降了。
Hive小文件产生的原因
前面已经提到,汇总后的数据量通常比源数据要少得多。而为了提升运算速度,我们会增加Reducer的数量,Hive本身也会做类似优化——Reducer数量等于源数据的量除以hive.exec.reducers.bytes.per.reducer所配置的量(默认1G)。Reducer数量的增加也即意味着结果文件的增加,从而产生小文件的问题。
解决小文件的问题可以从两个方向入手:
1. 输入合并。即在Map前合并小文件
2. 输出合并。即在输出结果的时候合并小文件
配置Map输入合并
set hive.merge.mapfiles = true##在 map only 的任务结束时合并小文件set hive.merge.mapredfiles = false ## true时在 MapReduce 的任务结束时合并小文件set hive.merge.size.per.task = 256*1000*1000##合并文件的大小set mapred.max.split.size=256000000; ##每个 Map 最大分割大小set mapred.min.split.size.per.node=1; ##一个节点上 split 的最少值set hive.input.format=org.apache.hadoop.hive.ql.io.CombineHiveInputFormat; ##执行 Map 前进行小文件合并
配置Hive结果合并
SET hive.exec.dynamic.partition.mode=nonstrict;
SET hive.exec.max.dynamic.partitions=10000000;
SET hive.exec.max.dynamic.partitions.pernode=100000;
SET hive.merge.tezfiles=true;--动态分区
insert overwrite table xxx PARTITION (dt)select *
fromxxxwhere dt>='2017-02-01' and dt
nsert overwrite table xxx PARTITION (dt='2017-02-01')selecta1,a2,a3fromxxxwhere dt='2017-02-01';
我们可以通过一些配置项来使Hive在执行结束后对结果文件进行合并:
hive.merge.mapfiles 在map-only job后合并文件,默认true
hive.merge.mapredfiles 在map-reduce job后合并文件,默认false
hive.merge.size.per.task 合并后每个文件的大小,默认256000000
hive.merge.smallfiles.avgsize 平均文件大小,是决定是否执行合并操作的阈值,默认16000000
Hive在对结果文件进行合并时会执行一个额外的map-only脚本,mapper的数量是文件总大小除以size.per.task参数所得的值,触发合并的条件是:
根据查询类型不同,相应的mapfiles/mapredfiles参数需要打开;
结果文件的平均大小需要大于avgsize参数的值。
示例:
-- map-red job,5个reducer,产生5个60K的文件。
create
table dw_stage.zj_small
as
select paid, count (*)
from dw_db.dw_soj_imp_dtl
where log_dt = '2014-04-14'
group
by paid;
-- 执行额外的map-only job,一个mapper,产生一个300K的文件。
set hive.merge.mapredfiles=
true;
create
table dw_stage.zj_small
as
select paid, count (*)
from dw_db.dw_soj_imp_dtl
where log_dt = '2014-04-14'
group
by paid;
-- map-only job,45个mapper,产生45个25M左右的文件。
create
table dw_stage.zj_small
as
select *
from dw_db.dw_soj_imp_dtl
where log_dt = '2014-04-14' ;
-- 执行额外的map-only job,4个mapper,产生4个250M左右的文件。
set hive.merge.smallfiles.avgsize=100000000;
create
table dw_stage.zj_small
as
select *
from dw_db.dw_soj_imp_dtl
where log_dt = '2014-04-14';
压缩文件的处理
对于输出结果为压缩文件形式存储的情况,要解决小文件问题,如果在Map输入前合并,对输出的文件存储格式并没有限制。但是如果使用输出合并,则必须配合SequenceFile来存储,否则无法进行合并,以下是示例:
set mapred.output.compression.
type=BLOCK;
set hive.exec.compress.output=
true;
set mapred.output.compression.codec=org.apache.hadoop.io.compress.LzoCodec;
set hive.merge.smallfiles.avgsize=100000000;
drop
table if
exists dw_stage.zj_small;
create
table dw_stage.zj_small
STORED
AS SEQUENCEFILE
as
select *
from dw_db.dw_soj_imp_dtl
where log_dt = '2014-04-14' ;
使用HAR归档文件
Hadoop的归档文件格式也是解决小文件问题的方式之一。而且Hive提供了原生支持:
set hive.archive.enabled=
true;
set hive.archive.har.parentdir.settable=
true;
set har.partfile.size=1099511627776;
ALTER
TABLE srcpart ARCHIVE PARTITION(ds= '2008-04-08', hr= '12' );
ALTER
TABLE srcpart UNARCHIVE PARTITION(ds= '2008-04-08', hr= '12' );
Hadoop Archive是一种特殊的归档格式,Hadoop Archive映射到文件系统目录,一个HAR以扩展名.har结尾,一个HAR目录包含元数据(以_index和_masterindex的形式)和data(part- *)文件。 _index文件包含文件名称,这些文件时归档的一部分,并且包含这些文件在归档中的位置。
hadoop archive -archiveName name -p *
-archiveName用来指定你想创建的归档名称,parent用来指定需要归档文件的相对路径的父参数(支持正则表达式)。需要注意的是归档是一个map/reduce。如下使用例子:
hadoop archive -archiveName zoo.har -p /foo/bar a/b/c e/f/g /outputdir
在以上例子中/foo/bar是a/b/c, e/f/g的父目录。如果你想直接对一个目录进行归档,可以直接使用如下命令:
hadoop archive -archiveName zoo.har -p /foo/bar /outputdir
档案(archive)属于文件系统层,使用不同的URI,在档案中可以使用所有的fs shell命令,需要注意的是档案是不可变的,不能够被删除,重命名和创建。HAR的URI格式如下所示:
har://scheme-hostname:port/archivepath/fileinarchive