一、编程技能

  • 精通 Python
  • 熟练使用 Requests 库进行网络请求,例如:
import requests
response = requests.get('https://www.example.com')
  • 1.
  • 2.
  • 运用 BeautifulSoup 或 Scrapy 框架进行网页解析,如用 BeautifulSoup 解析 HTML:
from bs4 import BeautifulSoup
html = '<html><body><p>Hello World</p></body></html>'
soup = BeautifulSoup(html, 'html.parser')
p_tag = soup.find('p')
print(p_tag.text)
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.


  • 掌握数据存储操作,连接 MySQL 数据库并插入数据:
import pymysql
conn = pymysql.connect(host='localhost', user='root', password='password', database='mydb')
cursor = conn.cursor()
sql = "INSERT INTO mytable (data) VALUES ('some data')"
cursor.execute(sql)
conn.commit()
conn.close()
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.


  • 了解 Java 在爬虫中的应用
  • 利用 Java 的多线程技术处理大规模并发爬虫任务,示例代码启动多个线程执行请求:
import java.util.concurrent.ExecutorService;
import java.util.concurrent.Executors;
public class ThreadedRequests {
    public static void main(String[] args) {
        ExecutorService executor = Executors.newFixedThreadPool(5);
        for (int i = 0; i < 10; i++) {
            Runnable worker = new RequestTask();
            executor.execute(worker);
        }
        executor.shutdown();
        while (!executor.isTerminated()) {
        }
        System.out.println("Finished all threads");
    }
}
class RequestTask implements Runnable {
    @Override
    public void run() {
        // 这里编写发送网络请求的代码
    }
}
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8.
  • 9.
  • 10.
  • 11.
  • 12.
  • 13.
  • 14.
  • 15.
  • 16.
  • 17.
  • 18.
  • 19.
  • 20.
  • 21.

二、网络知识

  • 深入理解 HTTP 协议
  • 熟知 HTTP 请求和响应结构、状态码含义及请求方法。例如分析登录过程中的 POST 请求及携带的表单数据。
  • 熟练运用浏览器开发者工具(如 Chrome DevTools)和 HTTP 调试代理工具(如 Fiddler、Charles)查看和分析网络请求。
  • 掌握网络架构和代理知识
  • 了解常见网络架构,以便优化爬虫网络访问策略。
  • 运用代理服务器隐藏真实 IP,如建立代理池并随机切换代理 IP 来避免被封禁:
import requests
proxies = {
  "http": "http://proxy_ip:proxy_port",
  "https": "http://proxy_ip:proxy_port"
}
response = requests.get('https://www.example.com', proxies=proxies)
  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.

三、反爬应对能力

  • 识别反爬机制
  • 能辨别验证码、IP 封禁、User-Agent 检测等常见反爬手段。例如分析滑块验证码的加载方式和验证逻辑。
  • 通过分析网站行为找出潜在反爬机制,如监测用户交互行为判断是否真实访问。
  • 制定应对策略
  • 对于验证码,简单图形验证码可使用 Tesseract OCR 识别,复杂的可模拟滑动轨迹或调用第三方服务。
  • 规避 IP 封禁可建立代理池并合理控制请求频率,如设置随机请求间隔:
import time
import random
time.sleep(random.randint(1, 5))
  • 1.
  • 2.
  • 3.
  • 对于动态页面,可使用 Selenium 或 Puppeteer 模拟浏览器操作,或分析 Ajax 请求直接获取数据接口。

四、数据处理和分析能力


  • 数据清洗和预处理
  • 使用正则表达式或 HTML 解析库去除抓取数据中的噪声,如:
import re
text = "Some text with <html> tags"
clean_text = re.sub('<.*?>', '', text)
  • 1.
  • 2.
  • 3.
  • 将数据转换为统一格式以便后续处理。
  • 数据分析和挖掘
  • 运用 Pandas、NumPy 等库进行基本数据分析操作,如计算统计指标:
import pandas as pd
data = [1, 2, 3, 4, 5]
df = pd.DataFrame(data, columns=['values'])
mean = df['values'].mean()
  • 1.
  • 2.
  • 3.
  • 4.
  • 应用数据挖掘和机器学习技术分析数据,如使用聚类算法进行情感分析。

五、问题解决和优化能力

  • 调试和错误处理
  • 运用编程语言调试工具定位和解决爬虫程序错误,如在 Python 中使用 pdb 调试器或在 IDE 中设置断点。
  • 建立错误日志记录机制,准确记录错误信息以便分析。
  • 性能优化
  • 优化网络请求,如合理设置请求头信息、使用连接池技术和并行请求。
  • 优化数据存储和处理,选择高效方式和算法。
  • 改进爬虫程序算法和代码结构提高执行效率和稳定性。