原文链接:
http://tecdat.cn/?p=13944tecdat.cn我们已经很自然地认为,不仅可以用一些协变量来解释单个索赔的频率,而且可以用单个成本来解释。
通常用来模拟成本的族是Gamma分布或逆高斯分布或对数正态分布(它不在指数族中,但是可以假设成本的对数可以用高斯分布建模)。在这里仅考虑一个协变量,例如汽车的寿命,以及两个不同的模型:一个Gamma模型和一个对数正态模型。
> age=0:20
> reggamma.sp <- glm(cout~agevehi,family=Gamma(link="log"),
+ data=couts)
> Pgamma <- predict(reggamma.sp,newdata=data.frame(agevehi=age),type="response")
对于Gamma回归,这是一个简单的GLM,因此并不困难。对于对数正态分布,应该记住对数正态分布的期望值不是基础高斯分布的指数。应该进行更正,以便在这里获得平均费用的无偏估算,
我们可以在一张图上绘制这两个预测,