R语言对数线性模型loglm函数_R语言通过伽玛与对数正态分布假设下的广义线性模型对大额索赔进行评估预测...

本文探讨了R语言中Gamma和对数正态分布模型在模拟成本和预测大额索赔方面的应用。通过比较两种模型,发现对数正态模型在处理大额索赔时对极端值不那么敏感。文章还提到了异常值的影响以及如何通过分组回归来处理大额索赔,以更准确地估计平均成本。
摘要由CSDN通过智能技术生成

7e235b609af13908a15fa8df9355032a.png

原文链接:

http://tecdat.cn/?p=13944​tecdat.cn
我们已经很自然地认为,不仅可以用一些协变量来解释单个索赔的频率,而且可以用单个成本来解释。

通常用来模拟成本的族是Gamma分布或逆高斯分布或对数正态分布(它不在指数族中,但是可以假设成本的对数可以用高斯分布建模)。在这里仅考虑一个协变量,例如汽车的寿命,以及两个不同的模型:一个Gamma模型和一个对数正态模型。


  1. > age=0:20

  2. > reggamma.sp <- glm(cout~agevehi,family=Gamma(link="log"),

  3. + data=couts)

  4. > Pgamma <- predict(reggamma.sp,newdata=data.frame(agevehi=age),type="response")

对于Gamma回归,这是一个简单的GLM,因此并不困难。对于对数正态分布,应该记住对数正态分布的期望值不是基础高斯分布的指数。应该进行更正,以便在这里获得平均费用的无偏估算,

我们可以在一张图上绘制这两个预测,


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值