一、学习目标
(1)理解弧长和扇形面积公式,并会计算弧长、扇形的面积;
(2)在弧长和扇形面积计算公式的探究过程中,感受转化、类比的数学思想.
在公式推导过程中,发现弧长与圆周长、扇形面积和圆面积都是部分与整体的关系,从而将计算弧长和扇形面积的问题转化为求圆周长和圆面积的一部分来解决,体会转化、类比的数学思想.
二、教学过程
(1)情景导课
引言:同学们,我们一起来欣赏一段200米决赛的精彩视频,请同学们观察运动员的起跑线和终点线.
【问题探究】
师:请同学们观察起跑线和终点线。(图片展示,标注起跑线和终点线)
师:很明显,他们的终点线在一条直线上,而他们的起跑线怎样呢?为了让大家看得更清楚,请同学们观察跑道的平面图.(展示标有起跑线的弯道和部分直道的平面图)
师:为什么起跑线都不一样?
生:因为直道的长一样,每一条弯道的弧长不一样,而运动员跑的长度一样,那么运动员跑的弧长应该相等.
师:好,点到问题的关键,下面以第一、二跑道为例,如果第一跑道200米起跑线为KC,第二跑道起跑线为AE,如果现在要检验第二跑道起跑线是否正确,如何检验?生:需要计算弧UW和弧XZ的长度.
师:怎样计算弧长呢?这就是我们今天要探究的第一个问题.(展示图形)(板书弧长)
【设计意图】选取比赛视频,贴近学生生活,引出数学问题,激发学生的求知欲望,初步感受弧长与半径和圆心角有关,为后面在同圆中探究弧长做好铺垫.
(2)引导探究
师:同学们知道,弧是圆的一部分,弧长是圆周长的一部分,我们从圆的形成开始,在一个平面内,线段绕它固定的一个端点旋转一周,另一个端点所形成的图形叫做圆,如果我在这个圆上另取半径OH1,当旋转OH1时,弧I1H1的长度随之发生改变.
师:那么在同一个圆中,弧长随什么量的变化而改变呢?
(展示图片,演示运动半径)
生:圆心角.
师:那么360度的圆心角所对的弧长是多少呢?
生:圆的周长.
【设计意图】复习圆的定义,圆的旋转不变形,感受弧是圆的一部分,弧长是圆周长的一部分,限定半径,让学生感受到弧长与圆心角有关,为弧长公式推导及扇形面积类比做出铺垫.
问题A:现在请同学们完成下面的探究:在半径为R的圆中,
1.求180〫,90〫,45〫,23〫的圆心角所对的弧长.
2.求n〫圆心角所对的弧长?
【探究历程】
师:180〫的圆心角所对的弧长是多少?
生:圆周长的一半,,
师:正确,90〫的圆心角所对的弧长是多少?
生:圆周长的四分之一,,
师:正确,45〫的圆心角所对的弧长是多少?
生:圆周长的八分之一,.
师:正确,23〫的圆心角所对弧长是多少呢?请同学们算一算。
【设计意图】因为180〫,90〫,45〫的圆心角所对的弧长是圆周长的几分多几,学生一眼就可以看出来,利用它让学生,明白弧长是圆周长的一部分,感受利用部分与整体的关系求出180〫,90〫,45〫的圆心角所对的弧长;关注圆心角,将圆心角等分就可以将圆周长等分,为求23〫的圆心角所对的弧长打下基础.这里隐含有“圆心角是圆的圆心角的几分之几,它所对的弧长就是圆周长的几分之几”,教师没有去揭示,也没有向学生发问,目的是让学生求23〫的圆心角所对的弧长时来检验是否认识了这种关系.
学生:
师: 表示什么意义?
生:1〫圆心角所对的弧长.
师:乘以23表示什么意义?
生:23度的圆心角所对的弧长是1度圆心角所对弧长的23倍.
师:怎么想到先求1〫圆心角所对的弧长?
生:因为求出1度圆心角所以的弧长后,求23度圆心角所对的弧长时,只需要将它乘以23就可以了.
师:你是如何求得1〫圆心角所对的弧长?
生:将360度的圆心角等分360份,1份就是1度的圆心角,它所对的弧长就是圆周长的.
师:你这样求的依据是什么呢?
生:在同圆中,相等的圆心角所对的弧相等.
师:非常好,还有别的方法吗?
学生二::
师:为什么用23除360呢?
生:因为圆心角占360度的几分之几,那么圆心角所对的弧长就是圆周长的几分之几.
师:依据是什么呢?
生:在同圆中,相等的圆心角所对的弧相等.
师:非常好,刚才同学们的方法,可以归纳为:
1.可先求1度的圆心角所对的弧长,再求23度圆心角所对的弧长;
2.可先求23度圆心角占360度的几分之几,再求23度圆心角所对的弧长;
3.它们的依据都是在同圆中,相等的圆心角所对的弧相等.
【设计意图】
让学生经历特殊角度到一般角度所对弧长的求解过程,引导学生理解弧长是圆周长的一部分,利用部分与整体的关系可以求出弧长.通过追问分析两种解答方法殊途同归,都是利用同圆中,相等的圆心角所对的弧相等,可以将圆心角分为2等份、3等份,也可以分为360等份,将圆等分后求1〫的圆心角所对的弧长,再求出任何度数圆心角所对的弧长,从而理解倍分关系,为后面求出n〫圆心角所对的弧长做出铺垫;同时通过追问提升学生认识,展示学生思维过程,追问出两种计算方法,追问出公式的来龙去脉,培养学生思维习惯和能力.
师:请用以上方法,直接写出半径为R,n〫圆心角所对的弧长.
学生: 学生:
【设计意图】
通过特殊到一般的探究过程,类比具体角度所对弧长的求解过程,求出n〫圆心角所对的弧长显得顺理成章,学生经历由具体到抽象的数学思维过程, 提升学生抽象思维能力,学会类比的数学思想。.
师:两种方法都求出了n度的圆心角所对的弧长,知道了圆心角和半径,就可以求出圆心角所对的弧长,我们把这个公式叫弧长公式,
板书:弧长公式:, 图形:
公式中有三个变量l,n,R,如果知道其中二个量就可以求出第三个量,也就是“知二求一”.
值得说明的是,掌握了以上二种计算方法,即便忘记了公式,也可以用求出弧长,因此对任何一个数学公式,记住非常重要,知道怎样得到的更重要.
【设计意图】
通过教师的点拨,让学生明白,学习不仅要知其然,更要知其所以然,掌握方法比记住公式更重要,学会探究问题的方法比得到问题的答案更重要;同时,对公式的分析,让学生学会总结,归纳,加强理解.
巩固练习:(几何画板展示)如图,∠J1G1X=6〫,G1J1=36米,
求弧XJ1的长.
师生活动:学生独立完成练习,得到解答米.
【设计意图】让学生巩固弧长公式,理解并运用公式,学以致用.
(3)自主探究
师:刚才同学们学习了弧长公式,在圆中,弧对着圆心角,由组成圆心角的两条半径和圆心角所对的弧围成的图形是扇形.(展示扇形定义与图片)
师:由组成圆心角的两条半径和圆心角所对的弧围成的图形是扇形.
师:很显然扇形是一个封闭图形,那么它的面积如何计算呢?
它就是今天我们要探究的第二问题.(板书:扇形面积)
师生活动:教师演示几何画板,并给出定义.
问题B:自主探究在半径为R的圆中,n°的圆心角所对扇形面积.
师:刚才通过弧长是圆周长的一部分得到了弧长公式,你能不能用类似的方法求出扇形的面积呢?
师:请同学们自主探究在半径为R的圆中,n°的圆心角所对扇形面积.
师:通过同学们探究,我们得到了扇形的面积公式:(板书),知道了圆心角和半径,就可以求出圆心角所对的扇形面积,实际上公式中有三个变量S,n,R,知道其中二个量就可以求出第三个量,也是“知二求一”.
【设计意图】学生通过类比弧长是圆周长的一部分,扇形面积是圆面积的一部分,体会类比思想,解决扇形面积公式;通过归纳与对比,寻找知识的共同点,提升学生分析问题、解决问题的能力。
巩固练习:如图8,∠H1I1G1=36〫,H1G1=5米,求扇形G1I1H1的面积.
师生活动:学生独立完成,得到解答:cm2.
【设计意图】
让学生巩固弧长公式,理解并运用公式,学以致用.
(4)深化拓展
问题C:1.已知圆的半径为4cm,则30〫的圆周角所对的弧长为_______.
师生活动:学生独立完成,组长检查,教师点评.
【设计意图】此题中给出圆周角而非圆心角,让学生注重公式的条件,n为圆心角度数的数值,需要将圆周角转化为圆心角,再利用公式计算.
问题D:2.已知弧的长度为2πcm,圆心角度数为40〫,则圆的半径为_______.
师生活动:学生独立完成,组长检查,教师点评.
【设计意图】
逆向运用公式,在弧长公式和扇形面积公式中,已知二个量求第三个量,需要学生正确理解三者的关系,灵活运用.
(5)综合运用
问题E:已知扇形的半径为4cm,扇形的弧长为πcm,则该扇形的面积是______cm2,扇形的圆心角为______°.
师:同学们在求扇形面积时,先根据弧长与半径求出了圆心角,再求扇形面积的,请同学们思考:扇形是由夹圆心角的半径和圆心角所对的弧长围成的,那么能否直接用半径和弧长求出扇形面积呢?
生:,(教师板书)
师:非常好,还有其它方法吗?
生:可以将弧长公式变形为代入扇形面积公式中消去n即可.
师:好的,还有其它方法吗?
生:将扇形面积公式与弧长公式相除消去n也可以.
师:同学们做的非常好,观察到了两个公式的共同点和不同点,以后的学习中也要这样,对于知识要进行横向和纵向的比较,可以让我们找到很多新的方法。事实上,扇形可持成弧为“底”,半径为“高”,面积等于底×高的曲边三角形.
【设计意图】
在解答此题时,学生一般会先求圆心角,再求面积,可能有的学生看过书会直接利用公式求出扇形面积,引出扇形面积第二个公式,将让学生讨论怎样得到新公式;如果没有学生利用新公式,则引导学生观察弧长公式与扇形面积公式的构成:都与半径和弧长有关,来引导学生寻找弧长l和半径R寻求新公式.此处给学生更多空间,即使自学了新公式,也要追本溯源,知道公式的来由,加深学生对知识的根源追朔,懂得学习不仅要知其然,更要知其所以然,培养学生探究知识,寻找真理的良好思想品质.
(6)反思升华
师:这节课我们学习了弧长和扇形面积,从中你有什么感受呢?
生:数学来源于生活又服务于生活.
【设计意图】
让数学的魅力再次升华,在感受数学价值的过程中加深对数学的理解,激发对数学的喜爱;
师:在收获知识、探究问题的过程中,本节课中我们用到了哪些数学思想?
生:①类比、②数形结合、③从特殊到一般、④从具体到抽象.
【设计意图】
让数学知识、技能、思想方法融合一体,突出思想方法在探究问题中的作用,让这些思想方法在学生心中生根发芽,在今后的学习中终身受益.
三、 教学反思
观看视频引导学生观察生活中的常见事物,抽象出数学模型,提出实际问题,将实际生活与数学相结合,感受弧长与半径和圆心角有关,为后面在同圆中在讨论弧长公式做铺垫;在探究环节,从特殊到一般,从具体到抽象,层层引导,剥茧抽丝,追本溯源,直达本质,让学生体会探究的乐趣与真谛,体会数学魅力,激发学习激情;以弧长公式探究为主线,扇形面积推导为辅线,抽象图形,巧用公式,类比方法,联想推导,培养学生思维习惯,提升学生的思维能力,达成学生分析问题、探究问题,解决问题的能力.在练习环节,从易到难,从单一公式运用到综合运用,及时处理生成性问题,将两个公式融为一体,理解弧长公式与扇形面积公式的联系与区别,提升学生综合能力.三个部分互相依托,层层推进,有序引导,自主类比,综合运用,最终提升能力.
成功之处:将实际问题抽象为数学问题,贴近学生生活;将书本知识转为学生思考,紧扣教材,重点研究弧长,引领学生从特殊到一般,从具体到抽象,不断探索,通过追问展示学生思维,回归数学教育的本质,引领学生探究、类比得到扇形面积公式;引导探究重点突出,自主探究类比思维明确,提高学生思维水平.
改进之处:弧长与圆心角的联系是关键,而且是突破口,需要进一步研究.