背景简介
随着物联网技术的发展,智能健康监测(IoHT)已成为研究和应用的热点。人体活动识别(HAR)作为IoHT中的一项关键技术,其目的是从收集到的健康数据中准确识别个体的活动和行为。本文将基于提供的章节内容,深入分析HAR的技术细节和面临的挑战。
传感器技术在HAR中的应用
HAR系统通常依赖于不同类型的传感器来获取健康数据。这些传感器可以被安装在人体上或环境中,包括可穿戴设备和环境传感器。WS-HAR(穿戴式传感器的人体活动识别)由于其灵活性、低成本和可接受的性能,在日常生活辅助中得到了广泛应用。例如,在康复、步态分析、跌倒检测、运动评估和日常生活分析等场景中,WS-HAR展现了其独特的价值。
数据采集与通信架构
HAR的数据采集过程涉及将传感器数据集成到智能手机、PDA、笔记本电脑等设备中。随后,数据通过Wi-Fi或蜂窝网络传输到边缘/云服务器,实现远程监控、可视化和分析。此外,图3展示了HAR的数据获取和通信架构,强调了传感器数据在集成设备中的收集以及预处理数据的传输。
HAR系统的一般组成
HAR在IoHT中是一个复杂的过程,涉及多个步骤,包括传感器的选择与部署、数据采集、数据预处理、特征提取、模型训练、模型评估和模型部署。为了从各种IoT设备中收集健康数据,HAR系统需要执行这些步骤来确保数据的准确性和可靠性。
智能手机传感器在健康监测中的应用
智能手机中嵌入的多种传感器使得它成为一种便利的健康监测工具。表1列举了不同类型的健康问题及其对应的智能手机传感器,如心率和心率变异性的监测可以通过摄像头和麦克风实现。数据获取后,可以通过移动应用程序进行分析或通过无线通信平台传输到远程医疗设施。
HAR在IoHT中的挑战及解决方案
HAR系统的设计和优化面临多个挑战,包括清晰理解活动的特性、实验中的数据获取和系统验证问题、侵入性传感器的使用风险、系统延迟、处理能力和准确性的权衡、以及处理弱标签数据的难题。为了克服这些挑战,研究人员不断探索新技术,如5G通信、边缘计算和深度学习,以及开发非侵入性、小尺寸和高精度的传感器。
机器学习在HAR中的应用
ML/DL算法在HAR中的应用日益增多,因为人类活动本身具有模糊性,而且往往标记不明确。ML/DL提供了高级统计工具来处理这些问题,并从大数据中学习,从而提高HAR的准确性。文章讨论了基于ML的HAR的基本步骤,包括数据预处理、去噪、信号到图像的转换、特征提取、特征选择和降维。
总结与启发
HAR作为IoHT的核心技术之一,其在医疗健康领域的应用前景广阔。从传感器选择、数据采集到机器学习算法的应用,每个环节都至关重要。尽管面临技术挑战,但通过不断的技术革新和跨学科合作,HAR系统的性能将不断提升,为医疗健康领域带来革命性的变化。同时,这也将激发未来对于更智能、更准确的健康监测系统的探索和开发。