写在前面的话:
期末复习展开,为了方便大家更好的“预习”线性代数,考试完美过关,我们推出“七天期末线性代数急速突破栏目”
这个栏目将线性代数分为六个章节:每个章节分为两个系列:考试不挂,提升拔高
考试不挂系列是线性代数基础知识和基础习题的汇总,只要大家认真看认真学习,可以轻轻松松保证考试不挂科
提升拔高系列是线性代数拓展知识和拔高习题的汇总,难度较高,知识点更加深入,是为了让大家在期末考试突破90分冲刺满分
基础知识
一、行列式和矩阵的区别
行列式:是一个数值,通过对
的矩阵进行计算而得到的一个数值,
行和列不相等的矩阵是无法计算出行列式的
矩阵,是一个表格,一个由
行
列的数字组成的一个大表,矩阵的行和列是可以相等也可以不等的
二、行列式的计算方法
1、逆序数法
1)全排列
把n个不同的数排成一列,叫做这n个数的全排列(排列)。一般1,2,....,n是n个数排列的标准次序
2)逆序数
当n个数的任意排列中两个数的先后次序与标准次序不同,就说有一个逆序(如213中的21即一个逆序),一个排列中所有的逆序总数叫做这个排列的逆序数。逆序数是奇数的排列叫做奇排列,逆序数是偶数的排列叫做偶排列。将逆序数即为符号
例如:求
从左到右一个数一个数看, 3前面比它大的数有0个,3对应的逆序数为0 2前面比它大的数有1个,2对应的逆序数为1 5前面比它大的数有0个,5对应的逆序数为0 1前面比它大的数有3个,1对应的逆序数为3 4前面比它大的数有1个,4对应的逆序数为1 故
3)n阶行列式定义
对于
对于
个数组成的数表,取自不同行不同列的n个元素的乘积的代数和,逆序数为偶数时带正号,逆序数为奇数时带负号
其中
是
的一个排列,当
是偶排列时带有正号,当
为奇排列时带有负号
用逆序解答行列式的方法又可以称之为对角线法,其只适用于一二三阶行列式的计算(当阶数大于三时,对角线法则十分繁琐),如:
一阶行列式:
,如
二阶行列式:
,先左后右,先加后减
对于二阶行列式
而言,其表示的为以行向量或列向量为边围成的平行四边形的面积
三阶行列式: