
写在前面的话:
期末复习展开,为了方便大家更好的“预习”线性代数,考试完美过关,我们推出“七天期末线性代数急速突破栏目”
这个栏目将线性代数分为六个章节:每个章节分为两个系列:考试不挂,提升拔高
考试不挂系列是线性代数基础知识和基础习题的汇总,只要大家认真看认真学习,可以轻轻松松保证考试不挂科
提升拔高系列是线性代数拓展知识和拔高习题的汇总,难度较高,知识点更加深入,是为了让大家在期末考试突破90分冲刺满分
基础知识
一、行列式和矩阵的区别
行列式:是一个数值,通过对
矩阵,是一个表格,一个由
二、行列式的计算方法
1、逆序数法
1)全排列
把n个不同的数排成一列,叫做这n个数的全排列(排列)。一般1,2,....,n是n个数排列的标准次序
2)逆序数
当n个数的任意排列中两个数的先后次序与标准次序不同,就说有一个逆序(如213中的21即一个逆序),一个排列中所有的逆序总数叫做这个排列的逆序数。逆序数是奇数的排列叫做奇排列,逆序数是偶数的排列叫做偶排列。将逆序数即为符号
例如:求![]()
从左到右一个数一个数看, 3前面比它大的数有0个,3对应的逆序数为0 2前面比它大的数有1个,2对应的逆序数为1 5前面比它大的数有0个,5对应的逆序数为0 1前面比它大的数有3个,1对应的逆序数为3 4前面比它大的数有1个,4对应的逆序数为1 故![]()
3)n阶行列式定义
对于
其中
用逆序解答行列式的方法又可以称之为对角线法,其只适用于一二三阶行列式的计算(当阶数大于三时,对角线法则十分繁琐),如:
一阶行列式:
二阶行列式:
对于二阶行列式

三阶行列式:

三阶公式看起来比较复杂,记得时候可以这样记,首先将行列式写两遍,再用斜对角线将数字框起来,则框起来后的式子相乘后即为上式中的每一项

2、代数余子式法
1)余子式:将行列式
【例题】
行列式如下,求![]()

解答:
为去掉第1行第1列元素后的2阶行列式
![]()
![]()
为去掉第2行第3列元素后的2阶行列式
![]()
![]()
2)代数余子式:
3)代数余子式求行列式:行列式等于行列式某行(某列)元素与其对应的代数余子式乘积的和,即
代数余子式的方法一般适用于4阶一下的行列式求解,大于4阶的行列式一般不建议采取此种方法
【例题】
求下列行列式

分析:
利用第一行进行展开,先求出,再利用
![]()
求出
,再利用公式
即可求出行列式
解答:
3、化为上下三角法求解行列式
1)上下三角行列式

对于下三角行列式,其值也为对角线元素乘积
对于对角行列式,其值也为对角线元素乘积

2)行列式的性质
- 行列式和它的转置行列式是相等的
对于矩阵A,转置即矩阵A的行和列对应互换。![]()
则
![]()
- 互换行列式某两行(列),行列式的正负性改变
- 行列式若有两行(列)完全相同,则行列式为零
- 行列式的某一行(列)都乘以同一常数
,等于
乘以这个行列式(注意只能是一行或一列)
- 行列式中某一行(列)所有元素的公因子,可以提到行列式记号的外面
- 行列式中某两行(列)对应元素成比例,行列式为0
- 行列式某一行(列)元素都是两元素和,则可以拆成两个行列式的和(注意只能是一行或者一列)
若,则
![]()
- 把行列式某一行(列)的元素k倍加到另一行(列),行列式不变
4、分块矩阵求解行列式
一个

感谢 @小季不是咸鱼 对本系列的大力支持
基本题型讲解
题型一、计算行列式
【1.1】对于形式一般的行列式,更好的方法是将该行列式转换为阶梯型,转换为三角行列式,注意行列式性质的运用

解:

先交换第一行和第二行,然后再将第一行的-2倍加到第二行,-3倍加到第三行,尝试化成阶梯型,发现第二行和第三行对应成比例,行列式等于0
【1.2】

解:

方法与上题相同,通过行变换,将其转化为三角矩阵,行列式直接等于对角线乘积
【1.3】

解:

通过上述三个例题我们可以看到,对于一个行列式,最首先想到的办法通过行变换,将其转化为三角矩阵。
题型二、利用行列式性质求解
【2.1】已知行列式
(1)
解:(1)

第三行乘3,那么行列式整体就乘3
(2)

(3)

该行列式交换了第一行和第二行,行列式乘-1,又交换了第二列和第三列,行列式乘-1,最终行列式的值不变
题型三、化为上下三角法求解行列式
【3.1】每行或每列相加后为常数的行列式
求

解:


注意求行列式很常用的一种方法:当行列式各行(列)诸元素之和相等时,将各行(列)加到同一行(列)上去求和,再提公因子,然后再运用其他方法求解
本题当中,每一列的元素和都为,故先将每一列求和,然后提取出来
![]()
【3.2】求:

解:

当遇到形式比较对称有规律的行列式,需要凭借我们的观察和试探,如果实在不行则就硬算,根据行列式的性质硬将其化为三角矩阵。求行列式必须积累一定的经验。
【3.3】

解:


除了将其他很多行加到同一行上以外,常见的还有将一行分别加到其他很多行
综上所示:求行列式的一般方法为“行和,列和相同”
行和,列和相同是指:若每一行(列)每个元素相加的和相等,如【3.1】所示
题型四、利用代数余子式求解行列式
【4.1】对代数余子式的考察

解:

练习题:
1.求

2.求

3.

4.求行列式

5.求行列式

6.

写在后面的话:
知乎码字不易,更多精彩内容、练习题的答案及其解析以及技巧点拨难以更好的呈现给大家
不过大家可以抬头看一下我的个性签名,更多精彩内容等你发现
十五天期末线性代数急速突破不断更新,期待你的持续关注
喜欢的话点一下赞和关注哦