刚刚教学完三位数除以一位数的除法笔算,特回顾梳理与各位分享。本单元重点是让学生掌握三位数除以一位数的笔算方法,难点是要学生理解算理,就是要明白这样计算的道理。计算课教学,除了理解算理掌握算法,里面蕴含的东西还有很多很多。计算无非是加减乘除,但会算只是一个方面,其中为什么用加减乘除列式的意义理解更重要,而且是贯穿计算教学的始终。下面结合二单元的教学谈谈我的一些做法和感悟。
一、让数学规定凸显计算道理。
学生在二年级下学期已经学习了表内除法的竖式如15÷3=5的竖式,但对于竖式格式为什么这样写已经淡忘。于是这单元的第一节课,在理解算理上下了很大的功夫,先创设情境,列式:42÷2=()目的是让孩子明白计算是一种需要,是为了解决生活中的问题而产生的。接着让学生用小棒代替实物分一分,然后试着列竖式。有的学生会列规范的竖式,有的列出了不同的竖式,有的不会(这很正常)请列式规范的学生板书,(最好的先入为主)讲讲他的道理(说不好很正常)。这时老师结合学生板书的竖式,质疑每一个数的含义,然后看课件演示分小棒的过程,并同步出示每一步的计算过程,目的是通过分小棒理解竖式中每个数的含义。在明白算理后应该结合刚才分小棒的过程让学生把竖式的每一步及时写下来,就是把直观感悟向抽象思维及时转化,初步建立数学模型。
接下来进行两次对比:一是对不同的竖式进行对比,体现出规范竖式的优势:能清晰的看出分了两次,每次要分多少,分了多少。二是对口算和笔算进行对比,口算不能看出每次分了多少,而除法竖式能。再次突出竖式计算的特有之处:竖式计算自有它的优势和道理,两位数除以一位数的竖式就是记录生活中两次平均分物品的过程,简洁又周密。孩子们了解到这样列竖式的道理后,还应给以充分的时间让他们讨论感悟这一个道理,在充分理解竖式意义的基础上掌握列竖式的书写格式,随即进行练习巩固。
二、让除法意义教学贯穿始终。
我们都遇到过类似的情况,如果正在学减法,学生解决问题或列式计算就爱直接列减法,如果正在学除法,学生当然也爱只列除法。
如:“三年级有90名学生,每两人用一张课桌,需要多少张课桌?把这些课桌平均放在3间教室里,每间教室里放多少张?”读题理解题意后,学生独立列出算式,指名汇报:
(1)90÷2=45(张)
(2)45÷3=15(张)
问:为什么这样列式?
生:第(1)问是求90里面有几个2。第(2)问是把45平均分成3份,求每份是多少。
但相当一部分学生不敢举手,不敢回答为什么这样列式?可以看出,他们是按套路列式,因为本单元学的是除法,就用除法呗,不去深究为什么这样列式?久而久之,学生就凭想当然去列式,懒于动脑了。这说明部分学生对除法意义的掌握不牢固,所以他们灵活使用意义解题就可想而知了。
利用文字题,可以全面强化对意义的理解。文字题就是应用题的缩减版,一步的文字题要么是利用加减乘除各部分之间的关系来出题,要么是利用加减乘除的意义来出题。和除法有关的文字题有以下几种:
291除以3的商是多少?
278除以5,商是多少,余数是多少?
除数是6,被除数是576,商是多少?
除数是7,商是125,被除数是多少?
除数是7,商是25,余数是6,被除数是多少?
从456里连续减4,减几次后等于0?
一个数除以8,商是23,这是数是多少?
234是2的几倍?
8个几是248?
一个数的8倍是632,这是数是多少?
前五道题都是根据除法各部分之间的关系来解决,后五道题则是利用除法的意义:均分或包含分来解决。其实这些题本质上归根到底还是利用除法的意义来解决,因为只有在深刻理解除法意义的基础上才能牢记除法各部分名称。
只要遇到解决问题、看图列式、列式计算等,一定让学生结合具体题意,说说这样列式的道理,并且通过对比练习,出一些干扰练习题,让学生保持清醒头脑不敢懈怠。要让他们明白,不动脑筋想当然的做法不是科学的学习态度,只有认真审题,按步骤冷静分析才有可能优秀。
三、让冷静思考助力灵活解题。
随着各种除法计算的深入学习,学生基本形成计算技能,能较熟练叙述计算过程。但对计算的灵活应用还不够,特别是学过估算之后,学生对选择计算还是估算总是心存矛盾。
如:在()里填上“>”或“<”。
209÷3( )70
298÷5( )60
643÷8( )80
569÷7( )80
有的学生用精确计算的方法比较大小,有的学生采用试商的方法,有的学生把除数和整十数相乘的积与被除数比较。让学生静心比较观察,他们自会优化算法,选择用除数和整十数相乘来比较大小。
再看这道题:估一估哪个算式的商最接近所给的数,在它上面画“√”。
60
660÷6 301÷5
425÷7 198÷3
90
918÷10 269÷3
545÷6 730÷8
虽然明确用估算,但怎样最快最好的找到结果,是学生的难题。如果把除法算式估算出结果,再和中间的数比较,相当麻烦,只有拿中间的数分别和除数相乘,再把乘积和被除数比较,才是最简洁的方法。估算教学只是过程,最终目标是将估算渗透到计算和问题解决的过程之中。
还有这道题:王老师4分钟打字385个,李老师5分钟打字512个。哪位老师打字打的更快?
通常学生会采用精确计算出两位老师每分钟的打字速度,然后进行比较得出李老师更快。有的学生悟出可以估算出结果,再比较。其实这道题根本不用算,只要看商的位数,就可以了,因为王老师打字速度的结果是两位数,李老师打字速度的结果是三位数。
还有一些比大小的题,完全不用计算,先引导学生观察题目特点,再利用意义解决就可以了,不过尽量把意义的理解切合学生生活实际。如:
(1)264÷8 264÷6;
(2)999÷9 819÷9;
(3)288÷6 368÷4。
第(1)题被除数相同,除数大的,商就小。优等生是可以理解的,但大部分还是不太理解,所以从除法的意义再解释一下:除法算式就是记录平均分物体的过程,被除数相同,可以看做两个同样大的西瓜,一个平均分成了8份,一个平均分成了6份,哪一份大?(结合学生生活中的分物体,学生都笑了,因为好理解。)第(2)题请学生思考后,以分西瓜为例说自己的意思:两个西瓜,一个大一个小,都平均分成了9份,大西瓜的每一份就大,所以填大于。第(3)题有点难,居然有学生利用西瓜说出了自己的想法,通俗易懂,赢得了大家的掌声:第一个算式可以看做小西瓜平均分的份数多,每份就少,第二个算式可以看做大西瓜平均分的份数少,每份就多,所以填小于。
我们要在练习中指导学生,不管遇到任何题目,都要先读题,观察数和符号的特点,想想题目要求,想想解题方法,让他们在观察后冷静选择灵活方法解题,或计算或估算等。让学生的冷静思考引领学习行动、助力灵活解题。
本单元的教学主要是计算,但计算的算理和这样列式的意义是根,是托底的东西。让学生做的从容,算的明白是我们始终要抓的根。除了在新授课中对理解算理和列式意义的教学下足功夫,在练习课中也一定要时时处处深化理解算理,强化列式的意义,让学生知道这样做,更要明白为什么这样做。只有学生计算的基础扎实、意义的理解入心、有静心思考的习惯,他们灵活选用方法解决问题才能得以实现。
编辑:李军杰
审核:刘君宏