如果通用计算机平均复乘,数字信号习题4_同济大学:数字信号处理_ppt_大学课件预览_高等教育资讯网...

第四章习题讲解

1.如果一台通用计算机的速度为平均每次复乘,

每次复加,用它来计算 512点的,问直接计算需要多少时间,用 运算需要多少时间。

5 s?

0.5 sD F T x n

FFT

解,(1)直接利用 计算:

复乘次数为,复加次数为 。

DFT

2N1NN?

复乘所需时间

6 2 6 21 5 1 0 5 1 0 5 1 2 1,3 1 0 7 2T N s

复加所需时间

6

2

6

0,5 1 0 1

0,5 1 0 5 1 2 5 1 2 1 0,1 3 0 8 1 6

T N N

s

所以直接利用 DFT 计算所需时间:

12 1,4 4 1 5 3 6T T T s

复乘所需时间

6

12

6

2

5 10 l o g

2

512

5 10 l o g 512 0.01152

2

N

TN

s

6

22

6

2

0,5 10 l o g

0,5 10 51 2 l o g 51 2 0,00 23 04

T N N

s

复加所需时间所以用 FFT 计算所需时间

12 0,0 1 3 8 2 4T T T s

(2) 利用 计算:

复乘次数为,复加次数为 。

FFT

2log2

N N

2logNN

2.已知,是两个 N点实序列,的值,今需要从,求,的值,为了提高运算效率,试用一个 N点 运算一次完成。

XkYkxnyn DFT

XkYkxnyn

IFFT

例:设 x1(n)和 x2(n)都是 N点的实数序列,试用一次 N点 DFT运算来计算它们各自的 DFT,

11[ ( ) ] ( )D F T x n X k? 22[ ( ) ] ( )D F T x n X k?

解:利用两序列构成一个复序列

12( ) ( ) ( )w n x n j x n

12( ) [ ( )] [ ( ) ( )]W k D F T w n D F T x n j x n

12[ ( )] [ ( )]D F T x n j D F T x n

12( ) ( )X k j X k

R e [ ( ) ] ( )epw n W k

I m [ ( ) ] ( )opj w n W k

1 ( ) R e [ ( ) ]x n w n?由得

11( ) [ ( ) ] { R e [ ( ) ] } ( )epX k D F T x n D F T w n W k

*1 [ (( )) (( )) ] ( )

2 N N NW k W N k R k

2 ( ) I m [ ( ) ]x n w n?由得

22

1( ) [ ( )] { I m [ ( )] } ( )

opX k D F T x n D F T w n W kj

*1 [ (( )) (( )) ] ( )

2 N N NW k W N k R kj

解,由题意X k D F T x n Y k D F T y n,

构造序列Z k X k j Y k

对 作一次 N点 IFFT可得序列Zkzn

又根据 DFT的线性性质

ID F T X k j ID F T Y k

而,都是实序列xnyn

Re

Im

x n z n

y n z n

()z n ID F T Z k

()z n IDF T Z k IDF T X k j Y k

x n j y n

3,N=16 时,画出基 -2 按时间抽取法及按频率抽取法的 FFT 流图(时间抽取采用输入倒位序,输出自然数顺序,频率抽取采用输入自然顺序,输出倒位序)。

解:

自然序 倒位序

0 0000 0000 0

1 0001 1000 8

2 0010 0100 4

3 0011 1100 12

4 0100 0010 2

5 0101 1010 10

6 0110 0110 6

7 0111 1110 14

自然序 倒位序

8 1000 0001 1

9 1001 1001 9

10 1010 0101 5

11 1011 1101 13

12 1100 0011 3

13 1101 1011 11

14 1110 0111 7

15 1111 1111 15

(1) 按时间抽取的基 -2FFT流图

1 6 2,4LNL

共有 L = 4级蝶形运算,每级 N / 2 = 8个蝶形运算每个蝶形的两节点距离为,即从第一级到第四级两节点距离分别为 1,2,4,8。

12m?

-

2( ) 2

r L m

NW r k

k L m

系数 的确定:

即 的二进制左移 位补零

rNW

1 ()mXk?

1 ()mXj?

()mXk

()mXj-1

(2) 按频率抽取的基 -2FFT流图基本蝶形是 DIT 蝶形的转置同样共有 L = 4级蝶形运算,每级 N / 2 = 8个蝶形运算每个蝶形的两节点距离为,即从第一级到第四级两节点距离分别为 8,4,2,1。

2Lm?

1

2( ) 2

1

rm

NW r k

km

系数 的确定:

即 的二进制左移 位补零

rNW

1 ()mXk?

1 ()mXj?

()mXk

()mXj-1

1 j若不计乘 及乘 的运算量则实际乘法次数为10次复数乘法

2

16

DF T 256

( - 1 ) 240

N

N

NN

直接计算 需要 次复数乘法次复数加法

2

2

F F T l o g 3 2

2

l o g 6 4

N N

NN

利用 计算需要 次复数乘法次复数加法

9,在下列说法中选择正确的结论。线性调频 z 变换

(CZT) 可以用来计算一个 M点有限长序列 在 z 平面的实轴上各 点的 z 变换,使

hn

kzHz

(1),α 为实数,α≠± 1。,0,1,1kkz a k N

(2),α 为实数,α≠0 。,,1,1kz a k k N

(3) (1)和 (2)两者都行。

(4) (1)和 (2)两者都不行。即线性调频 z 变换不能计算

H (z) 在 z 为实数时的抽样。

1

0

N

n

kk

n

H z h n z

其中抽样点须满足:

0000,0,1,1jkkkkz A W A W e k N

,,,为任意实数。0A 0W 0? 0?

对于说法( 1),只需取

,,,0 1A? 10Wa 0 0 0 0

( ),

k

k

C Z T z z

Hz

解,用于计算 平面上一段螺线作等分角的抽样点 上的复频谱

1

0 10

0,1,..,,1 C Z T ( )

k

k

k

za

za

k N H z

即起点为,初始相角和角度差均为,为螺线的伸缩率,就形成了实轴上各抽样点,

。因此可以用 算法来计算所以说法 (1)是正确的

00(2),,

()

k

kk

z ak A W

z

z z H z

对于说法 则 无法通过选择合适的 和,

使之成为 平面上一段螺线作等分角后的一组抽样点。

因此不能用CZ T算 法来计算各 点的 变换 。

13,我们希望利用一个单位抽样响应点数 N = 50 的有限冲激响应滤波器来过滤一串很长的数据。要求利用重叠保留法通过快速傅里叶变换来实现这种滤波器,

为了做到这一点,则:

( 1)输入各段必须重叠 P个抽样点;

( 2)我们必须从每一段产生的输出中取出 Q个抽样点,使这些从每一段得到的抽样连接在一起时,得到的序列就是所要求的滤波输出。假设输入的各段长度为 100个抽样点,而离散傅里叶变换的长度为 128点。

进一步假设,圆周卷积的输出序列标号是从 n = 0到

n = 127,则

( a)求 P; ( b)求 Q;

( c)求取出来的 Q个点的起点和终点的标号,即确定从圆周卷积的 128点中要取出哪些点,去和前一段的点衔接起来。

解,( a)由于用重叠保留法,如果冲激响应hn 的点数为

N点,则圆周卷积结果的前面的 1N? 个点不代表线性卷积结果,故每段重叠点数 P为

1 5 0 1 4 9PN

( b)每段点数为 72 128?,但其中只有 100个点是有效输入数据,其余 28个点为补充的零值点。因而各段不重叠而又有效的点数 Q为

100 100 49 51QP

( c)每段 128个数据点中,取出来的 Q个点的序号从

49n? 到 99n? 。用这些点和前后段取出的相应点连接起来,即可得到原来的长输入序列。

另外,对于第一段数据没有前一段,故在数据之前必须加上 1 4 9PN个零值点,以免丢失数据。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值