数字图像处理英文影印版:核心技术与应用

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:《数字图像处理英文影印版》是一本详尽覆盖图像处理核心概念和技术的权威教材。从图像获取到分析、理解的整个流程,包括数字化、预处理、特征提取、增强、复原、编码、分类与识别等环节,本书为读者提供了一个全面的图像处理知识框架。它强调预处理的重要性和特征提取技术,同时介绍了图像增强复原技术和图像压缩编码方法,并深入探讨了使用卷积神经网络(CNN)等深度学习技术进行图像分类和识别的最新进展。此书不仅适合初学者,也是资深从业者提升技能的宝贵资源。
数字图像处理英文影印版

1. 图像处理核心概念

在数字化时代,图像处理是信息技术领域不可或缺的一部分。它涉及使用计算机算法和软件对图像进行操作,从而提高其质量和可用性,或从中提取关键信息。图像处理的核心概念包括图像的数字化表示、图像处理算法、特征提取、分类和识别、以及图像的编码与压缩技术。对于专业人士而言,掌握这些概念不仅能够提高工作效率,还能在图像分析与处理中发挥创造性思维,解决复杂问题。

本章节将介绍图像处理的基本定义,为读者提供进入深度学习、图像分类和图像增强等高级话题所需的基础知识。我们将解释图像数字化的基本原理,并探讨像素、分辨率以及如何通过采样将现实世界的图像转换成计算机能够处理的数字化格式。这将为理解后续章节中图像预处理和特征提取等高级主题奠定基础。

1.1 图像的数字化表示

在数字图像处理中,图像被表示为像素阵列。像素(Picture Element)是构成数字图像的最小单元,它们可以具有不同的颜色值。图像的分辨率表示图像细节的精细程度,通常由宽度和高度的像素数量来定义(例如,1920x1080)。图像通过采样过程转换为数字化格式,这一过程涉及确定采样频率(即每单位距离内采样的点数),以确保图像能够被准确再现,避免失真。这一基础概念对于理解图像处理技术至关重要。

2. 图像数字化流程

2.1 数字图像的表示与采样

2.1.1 像素与分辨率的概念

数字图像由像素(Picture Elements)组成,像素是构成图像的最小单元,每一个像素点对应了图像在屏幕上显示的一个色点。分辨率指的是图像中水平和垂直方向上像素的数量,通常以“像素/英寸”(PPI)来衡量,表示图像清晰度的重要指标。高分辨率意味着图像包含更多的细节。

在实际操作中,理解像素与分辨率是十分重要的。例如,设计师在创建图形设计作品时,需要根据输出设备(如打印机、显示器)的要求选择合适的分辨率。错误的分辨率设置会导致图像模糊或者文件过大。

例子:
假设我们要创建一张用于网络显示的图像,如果输出设备要求图像分辨率为72 PPI,那么对于一个1024x768像素大小的图像,实际上在屏幕上显示时,其物理尺寸大约为14.2英寸宽和10.7英寸高。

2.1.2 采样定理及其应用

采样定理(也称奈奎斯特采样定理)是数字信号处理中的一个核心理论,它指出为了从采样信号中无失真地恢复原始信号,采样频率必须至少是信号最高频率的两倍,即Nyquist Rate。采样定理在图像处理中的应用则是将连续图像转换成离散的数字图像。

在图像数字化过程中,采样和量化是不可或缺的步骤。采样是在空间域内对图像进行离散化,量化则是将采样后的像素值映射到有限的灰度级上。应用采样定理时,必须保证采样频率足够高,以避免混叠现象,这通常在实际的图像采集设备(如相机)中预先设定。

2.2 彩色空间与颜色模型

2.2.1 RGB颜色模型

RGB(Red, Green, Blue)颜色模型是最常用的彩色图像表示方法,它基于加色原理,即通过红、绿、蓝三种颜色的光混合产生其他颜色。RGB图像中每一个像素都由红、绿、蓝三个颜色通道的值组成,这些值通常以8位表示,从而形成一个24位的彩色图像。

在Web开发中,RGB模型广泛应用于定义颜色,例如在CSS中定义元素的背景颜色:

.element {
  background-color: rgb(255, 0, 0); /* 红色 */
}

2.2.2 CMYK与HSV颜色模型

除了RGB模型之外,CMYK和HSV是另外两种常见的颜色模型。CMYK模型基于减色原理,常用于印刷行业,其中C代表青色,M代表品红色,Y代表黄色,K代表黑色。CMYK模型通过这些颜色的油墨混合来实现颜色的再现。

HSV模型,即色相、饱和度、亮度模型,它更接近人眼对颜色的感知方式。在图像处理软件中,调整HSV参数通常比直接修改RGB值更加直观。HSV模型对于颜色的选择和编辑尤其有用,使得用户可以更容易地调整图像的色调而不影响其他属性。

2.2.3 颜色空间转换

颜色空间转换是指在不同的颜色模型之间转换颜色的过程,这是一个线性代数中的矩阵变换问题。颜色转换通常在图像的采集、处理和显示过程中不断进行。例如,从RGB到CMYK的转换用于打印输出,从RGB到HSV的转换用于图像编辑。

颜色空间的转换涉及复杂的数学计算,软件工具如Adobe Photoshop可以自动执行这些转换。然而,理解基本的转换原理对于调整图像颜色至关重要。

转换公式举例(RGB到CMYK):

C = 1 - min(1, R/255, G/255, B/255)
M = 1 - min(1, R/255, G/255, B/255)
Y = 1 - min(1, R/255, G/255, B/255)
K = min(1 - R/255, 1 - G/255, 1 - B/255)

颜色空间的转换对于图像处理和显示设备至关重要,它保证了在不同设备上颜色的一致性和准确性。理解并能够应用这些转换对于IT专业人员在图像处理领域中解决实际问题有极大的帮助。

3. 图像预处理技术

在现实世界的图像获取和处理过程中,原始图像往往带有噪声、模糊和光照不均等问题。为了确保后续处理的准确性和有效性,预处理就显得尤为重要。本章节将深入探讨图像预处理中的关键技术,包括噪声消除、滤波、图像增强和图像恢复。

3.1 噪声消除与滤波

噪声是图像获取和传输过程中的常见问题,它可以来源于成像设备的电子元件、外部环境干扰等多种因素。噪声的存在会严重影响图像的质量,干扰图像特征的准确提取,因此噪声消除是图像预处理中不可或缺的步骤。

3.1.1 噪声类型与影响

在图像处理中,常见的噪声类型包括高斯噪声、盐椒噪声和泊松噪声。高斯噪声是一种随机噪声,其幅度遵循高斯分布,常见于无线传输、摄影和扫描等过程中。盐椒噪声表现为图像上的黑色和白色像素点,通常由于传输错误或感光元件缺陷引起。泊松噪声则与图像采集设备的光子计数有关,尤其在低光照条件下更为明显。

噪声不仅会降低图像的视觉效果,而且会对边缘检测、图像分割等图像分析任务造成干扰。因此,噪声消除在图像预处理中具有举足轻重的地位。

3.1.2 各类滤波器的原理与应用

滤波是图像预处理中用于噪声消除和图像平滑的常用方法。根据处理方式的不同,滤波器可以分为线性滤波器和非线性滤波器。常见的线性滤波器有均值滤波器、高斯滤波器等;非线性滤波器则包括中值滤波器、双边滤波器等。

均值滤波

均值滤波器是通过对图像中一定邻域内的像素值取平均来降低噪声的一种简单方法。尽管均值滤波器可以有效抑制高斯噪声,但其缺点是会模糊图像边缘。

import cv2
import numpy as np

# 读取图像
image = cv2.imread('noisy_image.jpg', 0)

# 应用均值滤波器
filtered_image = cv2.blur(image, (5, 5))

# 保存滤波后的图像
cv2.imwrite('mean_filtered_image.jpg', filtered_image)

在上述代码中, cv2.blur 函数用于实现均值滤波,参数 (5, 5) 指定了滤波器的核大小,核越大,滤波效果越明显,但同时也会导致图像越模糊。

中值滤波

中值滤波器是一种非线性滤波方法,它用邻域像素的中值代替中心像素的值。中值滤波对消除椒盐噪声非常有效,同时能够较好地保持图像边缘。

# 应用中值滤波器
median_filtered_image = cv2.medianBlur(image, 5)

# 保存滤波后的图像
cv2.imwrite('median_filtered_image.jpg', median_filtered_image)

cv2.medianBlur 函数中,参数 5 表示滤波器的大小,中值滤波器通常对3×3或5×5的邻域效果较好。

3.2 图像增强

图像增强是预处理中的另一项关键技术,它旨在改善图像的视觉效果或提取有用的特征。图像增强主要包括对比度调整和直方图均衡化。

3.2.1 对比度调整

对比度是指图像中明暗区域的差异,对比度调整通过调整图像的亮度和对比度来突出图像特征或改善视觉效果。

# 提高图像对比度
alpha = 1.5  # 对比度控制(大于1增加对比度,小于1减少对比度)
beta = 0     # 亮度控制(正值增加亮度,负值减少亮度)

# 对比度和亮度调整
adjusted_image = cv2.convertScaleAbs(image, alpha=alpha, beta=beta)

# 保存调整后的图像
cv2.imwrite('contrast_adjusted_image.jpg', adjusted_image)

在上述代码中, cv2.convertScaleAbs 函数用于调整对比度和亮度,其中 alpha 参数控制对比度大小, beta 参数控制亮度。

3.2.2 直方图均衡化

直方图均衡化是一种有效的图像增强技术,它通过拉伸图像的直方图来增加图像的全局对比度。这种方法特别适用于图像局部对比度较低的情况。

# 应用直方图均衡化
equalized_image = cv2.equalizeHist(image)

# 保存均衡化后的图像
cv2.imwrite('equalized_image.jpg', equalized_image)

cv2.equalizeHist 函数执行直方图均衡化操作。经过均衡化处理后,图像的亮度分布将趋向均匀,从而提高了图像的整体对比度。

3.3 图像恢复

图像恢复是指根据已知的退化过程,尝试重建原始图像的过程。它主要用于纠正由于成像设备缺陷、运动模糊或大气扰动等原因造成的图像退化。

3.3.1 空间域方法

空间域方法直接在图像空间中操作像素。例如,逆滤波和维纳滤波就属于空间域方法。

逆滤波

逆滤波是最简单的空间域图像恢复方法。它通过对退化函数取逆来尝试恢复原始图像。逆滤波对噪声非常敏感,因此常常结合其他方法使用以改善效果。

import numpy as np
from scipy.signal import convolve2d

# 假设degradation_matrix是退化函数
degradation_matrix = np.array([[1, 0, -1]])

# 对退化函数取逆(理想情况下)
inverse_matrix = np.linalg.inv(degradation_matrix)

# 模拟退化图像
degraded_image = convolve2d(image, degradation_matrix, mode='same')

# 应用逆滤波器
restored_image = convolve2d(degraded_image, inverse_matrix, mode='same')

# 保存恢复后的图像
cv2.imwrite('restored_image.jpg', restored_image)

在上述代码中,我们使用了 scipy.signal.convolve2d 函数来模拟退化和恢复过程。这种方法对高噪声的图像效果不佳,因此在实际应用中需要谨慎使用。

3.3.2 频率域方法

频率域方法涉及将图像从空间域转换到频率域,进行操作后,再转换回空间域。这一类方法如傅里叶变换和低通滤波器在去除周期性噪声方面非常有效。

# 应用傅里叶变换
f = np.fft.fft2(image)
fshift = np.fft.fftshift(f)

# 低通滤波器
rows, cols = image.shape
crow, ccol = rows // 2, cols // 2
mask = np.zeros((rows, cols), np.uint8)
r = 30  # 滤波器半径
center = [crow, ccol]
x, y = np.ogrid[:rows, :cols]
mask_area = (x - center[0]) ** 2 + (y - center[1]) ** 2 <= r*r
mask[mask_area] = 1

# 低通滤波
fshift = fshift * mask
f_ishift = np.fft.ifftshift(fshift)
img_back = np.fft.ifft2(f_ishift)
img_back = np.abs(img_back)

# 保存恢复后的图像
cv2.imwrite('frequency_restored_image.jpg', img_back)

在这个示例中,我们首先对图像进行傅里叶变换,然后创建一个低通滤波器掩码,并应用该滤波器。最后,通过逆傅里叶变换将图像恢复到空间域。

在本章节中,我们详细介绍了图像预处理的关键技术,包括噪声消除、图像增强和图像恢复方法。通过这些方法的应用,可以显著改善图像质量,为后续的图像分析和处理工作提供清晰、准确的输入数据。

4. 特征提取方法

4.1 边缘检测技术

4.1.1 边缘检测算子

边缘检测是图像处理中重要的技术之一,旨在确定图像中亮度变化明显的点。边缘检测算子通过卷积核(也称为滤波器)来实现,这些卷积核旨在响应图像中梯度的变化。

一个常见的边缘检测算子是Sobel算子,它包括两个卷积核,一个用于水平方向的边缘检测,另一个用于垂直方向。Sobel算子对噪声具有一定的鲁棒性,但可能会导致边缘点的位置发生偏移。

Canny边缘检测算子是一种更为高级的边缘检测技术。它包括四个主要步骤:噪声去除、计算梯度幅值和方向、非极大值抑制以及滞后阈值处理。Canny算子通过优化,能够提供边缘定位的准确性,并减少误报。

代码块展示了如何使用OpenCV库中的Sobel算子进行边缘检测:

import cv2
import numpy as np

# 读取图像
image = cv2.imread('example.jpg', cv2.IMREAD_GRAYSCALE)

# Sobel算子边缘检测
sobelx = cv2.Sobel(image, cv2.CV_64F, 1, 0, ksize=5)
sobely = cv2.Sobel(image, cv2.CV_64F, 0, 1, ksize=5)

# 计算梯度幅值
magnitude = np.sqrt(sobelx**2 + sobely**2)

# 将梯度幅值缩放到0-255以显示
magnitude = np.uint8(magnitude / magnitude.max() * 255)

# 显示结果
cv2.imshow('Sobel Edge Detection', magnitude)
cv2.waitKey(0)
cv2.destroyAllWindows()

在该代码中, cv2.Sobel 函数用于计算图像 example.jpg 的Sobel边缘检测结果。参数 1 0 分别指定了水平和垂直方向的导数。 ksize 是卷积核的大小,这里设置为5。接着计算梯度幅值,并将其归一化到0-255的范围以便显示。

4.1.2 边缘连接与跟踪

边缘检测算子通常只能提供图像中可能的边缘点,为了获取连贯的边缘线,需要进行边缘连接与跟踪。边缘连接是指将相邻的边缘点连接起来,形成边缘线。边缘跟踪则是在边缘连接的基础上,确定边缘的完整路径。

边缘跟踪的一个简单方法是使用霍夫变换,它可以检测图像中的直线边缘。霍夫变换工作原理是将图像空间中的点转换为参数空间中的线条,并找到这些线条的交集,以此确定可能的直线。

# 使用霍夫变换进行直线检测
edges = cv2.Canny(image, 50, 150, apertureSize=3)
lines = cv2.HoughLines(edges, 1, np.pi/180, 200)

# 在原图上绘制检测到的线条
for rho, theta in lines[:, 0]:
    a = np.cos(theta)
    b = np.sin(theta)
    x0 = a*rho
    y0 = b*rho
    x1 = int(x0 + 1000*(-b))
    y1 = int(y0 + 1000*(a))
    x2 = int(x0 - 1000*(-b))
    y2 = int(y0 - 1000*(a))
    cv2.line(image, (x1, y1), (x2, y2), (0, 0, 255), 2)

代码块中使用了 cv2.HoughLines 函数,它在经过Canny边缘检测的图像 edges 上应用霍夫变换来检测直线。检测到的直线的参数 rho theta 被用于确定每条直线的两个端点,并使用 cv2.line 将这些线绘制在原始图像上。

4.2 角点与兴趣点检测

4.2.1 Harris角点检测

角点检测是图像特征提取中的一项关键技术,用于定位图像中的角点。角点是图像中具有独特局部特征的点,常用于图像匹配和目标识别。

Harris角点检测算法是一种广泛使用的角点检测技术,它通过分析图像的局部窗口来确定角点。Harris算法基于以下假设:如果窗口在图像中的两个方向上发生移动时,窗口内的像素灰度变化很大,则该窗口中心很可能是一个角点。

# Harris角点检测
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
gray = np.float32(gray)
harris_corners = cv2.cornerHarris(gray, blockSize=2, ksize=3, k=0.04)

# 结果可视化
harris_corners = cv2.dilate(harris_corners, None)
image[harris_corners > 0.01 * harris_corners.max()] = [0, 0, 255]
cv2.imshow('Harris Corner Detection', image)
cv2.waitKey(0)
cv2.destroyAllWindows()

在这段代码中,首先将图像转换为灰度图,然后使用 cv2.cornerHarris 函数来检测角点。参数 blockSize ksize 分别指定了局部窗口的大小和应用于窗口的Sobel算子的大小。 k 是一个用于调整算法敏感度的常数。最后,通过膨胀操作和阈值处理,将角点在原始图像上可视化出来。

4.2.2 SIFT和SURF特征提取

尺度不变特征变换(SIFT)和加速稳健特征(SURF)是两种在图像特征提取中非常流行的算法。它们能够从图像中提取出具有尺度不变性和旋转不变性的特征点,并且这些特征点对于仿射变换也是鲁棒的。

SIFT算法主要包含四个步骤:尺度空间极值检测、关键点定位、方向分配和关键点描述符的生成。SIFT特征是高度区分性的,并且对于光照和视角的变化具有一定的鲁棒性。

SURF算法类似于SIFT,但在关键点检测和描述符生成方面使用了更快的算法,使得它在处理速度上大大超过了SIFT。

# 使用SIFT算法提取特征
sift = cv2.SIFT_create()
keypoints, descriptors = sift.detectAndCompute(gray, None)

# 在图像上绘制关键点
sift_image = cv2.drawKeypoints(image, keypoints, None)
cv2.imshow('SIFT Feature Detection', sift_image)
cv2.waitKey(0)
cv2.destroyAllWindows()

在该代码段中, cv2.SIFT_create 用于创建SIFT对象,并使用 detectAndCompute 函数检测图像的关键点和描述符。最后,使用 cv2.drawKeypoints 将检测到的关键点绘制在原始图像上。

由于SIFT和SURF算法受到专利保护,OpenCV的某些版本不包含这些算法的实现,或者可能需要额外安装OpenCV的非自由模块。在这种情况下,可以使用其他算法如ORB等作为替代。

5. 图像增强与复原

5.1 图像增强技术

5.1.1 空间域增强方法

在空间域中,图像增强的直接操作是基于图像的像素值。这些方法通常简单直观,易于实现和理解。一个常见的方式是对图像应用各种数学运算,如线性或非线性变换来改变图像的灰度级。空间域增强技术的关键在于利用邻域像素点的关系来进行图像处理。

对比度调整

对比度调整是通过改变图像的亮度和对比度来实现的,目的是使图像中的暗区变亮,亮区变暗,增强图像的整体可识别性。一种简单的方法是使用线性变换,调整像素值的范围。例如,通过线性变换公式:

s = a * r + b

这里的 r 是原始图像的像素值, s 是增强后的像素值,而 a b 是调整参数,用于控制对比度和亮度。

代码示例:

import cv2
import numpy as np

# 读取图像
image = cv2.imread('input.jpg')

# 线性变换,增强对比度
a = 1.5  # 增加对比度
b = 0    # 保持亮度不变
enhanced = cv2.convertScaleAbs(image, alpha=a, beta=b)

# 显示原始和增强后的图像
cv2.imshow('Original Image', image)
cv2.imshow('Contrast Enhanced Image', enhanced)
cv2.waitKey(0)
cv2.destroyAllWindows()

在这个例子中, cv2.convertScaleAbs 用于应用线性变换。参数 alpha 用于调整对比度, beta 用于调整亮度。

直方图均衡化

直方图均衡化是一种常用的提高图像对比度的方法,其通过调整图像的直方图来实现。直方图均衡化通常用于图像具有狭窄的灰度级范围时,它通过拉伸直方图来增加图像的全局对比度。

代码示例:

import cv2
import numpy as np

# 读取图像
image = cv2.imread('input.jpg', 0)

# 应用直方图均衡化
equalized = cv2.equalizeHist(image)

# 显示原始和均衡化后的图像
cv2.imshow('Original Image', image)
cv2.imshow('Histogram Equalized Image', equalized)
cv2.waitKey(0)
cv2.destroyAllWindows()

在上述代码中, cv2.imread 的参数 0 表示读取图像为灰度模式, cv2.equalizeHist 直接应用直方图均衡化函数。

5.1.2 频率域增强技术

与空间域方法不同,频率域增强是基于图像的傅里叶变换的,它涉及到图像频谱的分析和修改。通过改变频域内的频率成分,可以达到增强特定频率特征的目的。

高频和低频增强

高频信息往往与图像的细节相关,而低频信息则与背景和大区域的平滑变化有关。通过在频率域增强高频部分,可以锐化图像的边缘;通过增强低频部分,则可以增加图像的整体亮度。

代码示例:

import cv2
import numpy as np
from matplotlib import pyplot as plt

# 读取图像
image = cv2.imread('input.jpg', 0)

# 对图像进行傅里叶变换
f = np.fft.fft2(image)
fshift = np.fft.fftshift(f)

# 创建低通和高通滤波器
rows, cols = image.shape
crow, ccol = rows // 2, cols // 2
low_pass_filter = np.zeros((rows, cols), np.uint8)
high_pass_filter = np.zeros((rows, cols), np.uint8)

# 低通滤波器定义
low_pass_filter[crow-30:crow+30, ccol-30:ccol+30] = 1

# 高频增强
high_enhanced = fshift * (1 - low_pass_filter)
high_enhanced = np.fft.ifftshift(high_enhanced)
high_enhanced = np.fft.ifft2(high_enhanced)
high_enhanced = np.abs(high_enhanced)

# 显示原始和增强后的图像
plt.subplot(121), plt.imshow(image, cmap='gray')
plt.title('Input Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122), plt.imshow(high_enhanced, cmap='gray')
plt.title('High Frequency Enhanced Image'), plt.xticks([]), plt.yticks([])
plt.show()

在此代码中,我们首先计算了图像的傅里叶变换,然后定义了一个简单的低通滤波器(圆形)。接着,通过将该滤波器与频域中的图像相乘来执行低频滤波,而高频增强则是通过用 1 减去低通滤波器的掩码来实现的。最后,通过逆变换将图像变换回空间域。

5.2 图像复原技术

5.2.1 退化模型与逆滤波

图像复原是在已知或假设退化过程的前提下,尽可能恢复图像原有质量的过程。退化模型描述了图像从原始状态到退化状态的转换过程,而逆滤波是一种基于逆滤波器的复原技术,它试图通过应用逆运算来消除退化。

逆滤波器的原理

逆滤波器尝试消除图像的模糊性。假定退化函数已知,且无噪声干扰,逆滤波器可以直接计算为:

H_inv(u,v) = 1 / H(u,v)

其中, H(u,v) 是退化函数的傅里叶变换, H_inv(u,v) 是逆滤波器。

代码示例:

import cv2
import numpy as np
from matplotlib import pyplot as plt

# 读取图像
image = cv2.imread('blurred_image.jpg', 0)

# 对图像进行傅里叶变换
f = np.fft.fft2(image)
fshift = np.fft.fftshift(f)

# 定义退化函数
h = np.array([[0.5, -0.5], [-0.5, 0.5]])
h = np.fft.fft2(h, s=image.shape)
h = np.fft.fftshift(h)

# 应用逆滤波器
restored = fshift / h
restored = np.fft.ifftshift(restored)
restored = np.fft.ifft2(restored)
restored = np.abs(restored)

# 显示原始和复原后的图像
plt.subplot(121), plt.imshow(image, cmap='gray')
plt.title('Blurred Image'), plt.xticks([]), plt.yticks([])
plt.subplot(122), plt.imshow(restored, cmap='gray')
plt.title('Restored Image'), plt.xticks([]), plt.yticks([])
plt.show()

在上述代码中,我们首先模拟了图像的退化过程,然后尝试通过逆滤波器进行恢复。需要注意的是,实际应用中逆滤波器很敏感于噪声,因此,在退化模型未知或存在噪声时,逆滤波可能不会给出好的结果。

5.2.2 维纳滤波与盲去卷积

维纳滤波是考虑噪声的一种改进型逆滤波方法。它不仅仅尝试反转退化过程,同时也考虑了噪声的影响。此外,盲去卷积是一种尝试在不知道具体退化模型的情况下复原图像的技术。

维纳滤波的原理

维纳滤波尝试最小化原始图像和复原图像之间的均方误差。这种方法在处理有噪声的图像时更为有效,其滤波器函数为:

H_wiener(u,v) = 1 / H(u,v) * |H(u,v)|^2 / (|H(u,v)|^2 + S_n(u,v) / S_s(u,v))

其中, S_n(u,v) 是噪声的功率谱密度, S_s(u,v) 是信号的功率谱密度。

盲去卷积技术

盲去卷积是复原技术的一个分支,它不依赖于确切的退化函数。这种技术通常依赖于迭代优化方法,例如期望最大化(EM)算法,来估计退化函数和恢复图像。

盲去卷积涉及到复杂的数学计算和参数估计,因此通常需要专门的软件包或库来实现。

代码示例:

import cv2
import numpy as np
from skimage.restoration import denoise_tv_chambolle, unsharp_mask

# 读取模糊图像
blurred_image = cv2.imread('blurred_image.jpg', 0)

# 应用维纳滤波进行复原
restoration_wiener = denoise_tv_chambolle(blurred_image)

# 应用非锐化掩模进行复原
restoration_unsharp = unsharp_mask(blurred_image)

# 显示原始和复原后的图像
fig, ax = plt.subplots(1, 3, figsize=(8, 3), sharex=True, sharey=True)
ax[0].imshow(blurred_image, cmap=plt.cm.gray)
ax[0].set_title('Blurred image')
ax[1].imshow(restoration_wiener, cmap=plt.cm.gray)
ax[1].set_title('Wiener restoration')
ax[2].imshow(restoration_unsharp, cmap=plt.cm.gray)
ax[2].set_title('Unsharp masking')

for a in ax:
    a.axis('off')

plt.show()

在这段代码中,我们使用了 skimage 库中的 denoise_tv_chambolle unsharp_mask 函数分别进行维纳滤波和非锐化掩模处理。这些方法在实际应用中可以提供比传统方法更好的复原效果。

通过这些复原技术,可以有效地对抗图像退化,恢复图像质量。对于专业IT和相关行业的从业者来说,理解这些方法并能灵活应用它们对实际工作将是非常有价值的。

6. 图像编码与压缩

在当今数字化时代,图像数据的存储和传输占据了巨大的数据量,因此,图像编码与压缩技术成为了图像处理领域中至关重要的环节。它旨在减少图像的存储空间,同时尽可能保留图像的视觉质量。

6.1 图像编码原理

6.1.1 信息熵与编码效率

信息熵是衡量信息量的一个度量标准,它反映了信息的不确定性。在图像编码中,我们希望以最小的比特数来表示图像信息,同时尽量减少冗余。香农第一定理指出,如果信息源的平均信息熵为H,则存在一种编码方式使得平均码长L满足不等式 H ≤ L < H + 1。这表明通过有效编码可以接近信息熵的下限,实现较高的编码效率。

6.1.2 哈夫曼编码与算术编码

哈夫曼编码是一种广泛应用于图像压缩的无损编码方法。其核心思想是基于字符出现的概率来进行编码,出现概率高的字符分配较短的码字,出现概率低的字符分配较长的码字。哈夫曼编码是一种前缀编码,保证了无歧义的解码过程。

算术编码与哈夫曼编码类似,都是根据字符出现的概率来进行编码。然而,算术编码不会对信息源中的每个字符单独编码,而是将整个消息作为一个整体来考虑,并为之分配一个0到1之间的数。算术编码在处理具有相似概率分布的较长消息时,具有更高的编码效率。

6.2 图像压缩技术

6.2.1 无损压缩技术

无损压缩技术能够完整地还原压缩前的图像信息。除了哈夫曼编码和算术编码外,常见的无损压缩技术还包括Lempel-Ziv-Welch(LZW)算法、游程编码(Run-Length Encoding,RLE)等。LZW算法通过构建字典的方式来压缩图像数据,而游程编码利用了图像中相邻像素值往往相同的特点来进行压缩。

6.2.2 有损压缩标准JPEG

与无损压缩技术不同,有损压缩技术在压缩过程中会丢失一些信息,但在视觉上几乎不可察觉,从而达到更高的压缩比。JPEG(Joint Photographic Experts Group)是最为常见的有损压缩标准之一,适用于照片类图像。JPEG压缩主要通过离散余弦变换(DCT)和量化过程来实现。首先将图像分割为8x8的块,并对每个块应用DCT变换,然后通过量化表进行量化,以去除人眼不易察觉的高频信息,最后对量化后的系数进行编码,实现压缩。

例如,一个简化的JPEG编码过程包括以下步骤:

graph LR
    A[原始图像] --> B[分块]
    B --> C[应用DCT]
    C --> D[量化]
    D --> E[编码]
    E --> F[压缩后的图像]

这个流程中,关键在于量化表的设计。好的量化表能够在不显著影响图像质量的前提下,达到较高的压缩比。

有损压缩技术的应用,比如JPEG,虽然牺牲了一定的图像质量,却显著地减少了存储空间的需求和传输时间,使得大尺寸图像的处理和分享变得可行。随着技术的发展,我们也看到不断优化的JPEG标准(如JPEG 2000)和新兴的有损压缩技术(如HEVC的图像压缩)的出现。

下一章节,我们将继续深入了解图像分类与识别的相关技术和方法。

本文还有配套的精品资源,点击获取 menu-r.4af5f7ec.gif

简介:《数字图像处理英文影印版》是一本详尽覆盖图像处理核心概念和技术的权威教材。从图像获取到分析、理解的整个流程,包括数字化、预处理、特征提取、增强、复原、编码、分类与识别等环节,本书为读者提供了一个全面的图像处理知识框架。它强调预处理的重要性和特征提取技术,同时介绍了图像增强复原技术和图像压缩编码方法,并深入探讨了使用卷积神经网络(CNN)等深度学习技术进行图像分类和识别的最新进展。此书不仅适合初学者,也是资深从业者提升技能的宝贵资源。


本文还有配套的精品资源,点击获取
menu-r.4af5f7ec.gif

评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符  | 博主筛选后可见
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值