目录
二 条件随机场的概念与参数化形式(重点介绍线性链条件随机场)
3 线性链条件随机场的参数化形式(条件随机场完全由特征函数与特征函数权值确定)
一 概率无向图
1 概率无向图的概念(三段式描述)
1)大前提
联合概率分布,由无向图表示
注意:
- :表示多维随机变量
- :表示无向图中的结点(随机变量)
- :表示无向图中的边(随机变量之间的依赖关系)
2)小前提
联合概率分布,满足成对马尔可夫性、局部马尔可夫性、全局马尔可夫性
3)结论
联合概率分布,称为概率无向图(或者称为马尔可夫随机场/马尔可夫网络)
2 概率无向图的成对、局部、全局马尔科夫性
1)成对马尔可夫性(条件独立)
- 设是无向图中任意两个没有边连接的结点,其中结点分别对应随机变量
- 设是无向图中除外所有的结点,其中对应随机变量
- 满足:
2)局部马尔可夫性(条件独立)
- 设是无向图中任意一个结点,其中结点分别对应随机变量
- 设是与有边连接的所有的结点,其中对应随机变量
- 设是无向图中除外所有的结点,其中对应随机变量
- 满足:
3)全局马尔可夫性(条件独立)
- 设节点集合是在无向图中被节点集合C分开的任意节点集合,其中分别对应随机变量
- 满足:
3 概率无向图的因子分解
1)团与最大团
- 团:是指无向图中的结点子集,要求子集中任意两个结点都有边连接
- 最大团:是指存在团,无法添加进去任意一个结点进去
2)因子分解
第一点:因子分解的概念
概率无向图中随机变量的联合分布表示为其最大团上的随机变量的函数的乘积形式
第二点:公式
注意:
- :表示对应的随机变量
- :表示规范化因子
- :表示最大团
- :表示最大团对应的随机变量
- :表示势函数(严格正函数)
第三点:公式的扩展