互补滤波系数_关于MPU6050姿态解算的一阶互补滤波方法(从原理到代码实现)...

本文详细介绍了如何使用一阶互补滤波算法解决MPU6050传感器姿态解算的问题。通过分析加速度计和陀螺仪的噪声特性,阐述了一阶互补滤波的原理,并提供了数学推导和MATLAB验证。文中给出了具体的代码实现,探讨了滤波系数的选择,并对比了不同滤波方法的适用场景。
摘要由CSDN通过智能技术生成

关于MPU6050一阶互补滤波方法(从原理到代码实现)

1.写在前面

最近知道自己不用考研后便花了很多时间来准备机械创新设计大赛,在设计的多功能防台风窗中需要到MPU6050对窗户的姿态进行检测,用来反馈到步进电机控制电机转动(别问为什么不用编码器反馈来控制电机转动,问就是穷,当然也存在本项目用的电源电压低,丢步严重的问题。)在MPU6050传感器中一般读到的原始数据为三轴加速度和三轴角速度,那么如何利用这六个数据进行姿态解算便成为了一个首要的问题。可以利用官方的dmp来解算姿态,但是代码移植是个问题,我用的是恩智浦的RT1064,手头只有MSP430和STM32的dmp库,在采用卡尔曼滤波算法发现收敛太慢的情况下,我决定采用经典的一阶互补滤波算法和简单的自适应一阶互补滤波算法来试试看,也从数学原理到代码彻底的把一阶互补滤波原理捋一遍。

2.什么是一阶互补滤波以及为什么要用一阶互补滤波

假设我们需要测定一个物理量,这个物理量可以通过两个传感器测得,而且其中一个传感器的测量噪声主要集中在高频段,另一个传感器的噪声主要集中在低频段,那么我们可以构造出两个滤波器,其中一个是低通滤波器,另一个是高通滤波器。然后让这两个传感器测得数据分别通过这两个滤波器再进行加权求和:

Y=αx1+(1-α)x2 (1)

式(1)中Y即为输出的预测值,α为加权系数,如果这个时候α可变,并且时时刻刻保持估算出的Y的方差最小那么α还有一个名字——卡尔曼增益,此时转化为最佳线性滤波——卡尔曼滤波,只是在卡尔曼滤波算法中x1或者x2有一个是实测的,另一个是通过其他传感器再结合数学模型推测的结果,这和我们MPU6050姿态解算很像,比方说我

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值