python Fisher LDA降维参数

Fisher LDA是一种机器学习算法,用于将多维数据降维至低维空间,从而使得数据更容易可视化和理解。在使用Fisher LDA进行降维时,通常需要考虑以下参数:

  • n_components: 表示降维后的维度数,默认值为2。
  • solver: 表示求解最优化问题的算法,可选的值有'eigen'、'lsqr'、'svd'。默认值为'eigen'。
  • shrinkage: 表示shrinkage LDA的系数,可以调节算法的复杂度与性能之间的平衡。值越大,算法复杂度越小,但性能也会下降。默认值为None,表示不使用shrinkage LDA。
  • priors: 表示数据的类别概率分布,默认值为None,表示使用类别平衡的概率分布。

在使用Fisher LDA进行降维时,需要注意的是,数据必须是结构化的,并且每个维度之间的尺度要相同。这意味着,在使用Fisher LDA之前,可能需要进行特征缩放或标准化操作。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值