Fisher LDA是一种机器学习算法,用于将多维数据降维至低维空间,从而使得数据更容易可视化和理解。在使用Fisher LDA进行降维时,通常需要考虑以下参数:
n_components
: 表示降维后的维度数,默认值为2。solver
: 表示求解最优化问题的算法,可选的值有'eigen'、'lsqr'、'svd'。默认值为'eigen'。shrinkage
: 表示shrinkage LDA的系数,可以调节算法的复杂度与性能之间的平衡。值越大,算法复杂度越小,但性能也会下降。默认值为None,表示不使用shrinkage LDA。priors
: 表示数据的类别概率分布,默认值为None,表示使用类别平衡的概率分布。
在使用Fisher LDA进行降维时,需要注意的是,数据必须是结构化的,并且每个维度之间的尺度要相同。这意味着,在使用Fisher LDA之前,可能需要进行特征缩放或标准化操作。