线性判别分析(LDA)是一种分类方法,它可以用于将数据划分为不同的类别。在 Matlab 中,您可以使用 fitcdiscr 函数来训练 LDA 模型。
以下是一个简单的示例,展示如何使用 fitcdiscr 函数在 Matlab 中训练 LDA 模型:
% 加载数据
load fisheriris
% 使用前两个特征(萼片宽度和萼片长度)作为输入,将鸢尾花数据划分为两类X = meas(:,1:2);
Y = species;
% 训练 LDA 模型
mdl = fitcdiscr(X,Y);
% 使用训练好的模型进行预测
predictedLabels = predict(mdl,X);
% 计算预测精度
accuracy = sum(predictedLabels == Y)/length(Y);
fprintf('Accuracy: %.2f%%\n',accuracy*100);
在这个示例中,我们使用了鸢尾花数据集(通过调用 load fisheriris 加载),并使用前两个特征(萼片宽度和萼片长度)作为输入。然后我们调用 fitcdiscr 函数来训练 LDA 模型,最后使用 predict 函数对新数据进行预测。
希望这个示例能够帮助您理解如何在 Matlab 中使用 LDA。