线性判别分析的matlab代码

文章展示了如何在Matlab中运用fitcdiscr函数训练线性判别分析(LDA)模型,以鸢尾花数据集为例,选取前两个特征进行分类,并计算预测精度。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

线性判别分析(LDA)是一种分类方法,它可以用于将数据划分为不同的类别。在 Matlab 中,您可以使用 fitcdiscr 函数来训练 LDA 模型。

以下是一个简单的示例,展示如何使用 fitcdiscr 函数在 Matlab 中训练 LDA 模型:

% 加载数据
load fisheriris

% 使用前两个特征(萼片宽度和萼片长度)作为输入,将鸢尾花数据划分为两类X = meas(:,1:2);
Y = species;

% 训练 LDA 模型
mdl = fitcdiscr(X,Y);

% 使用训练好的模型进行预测
predictedLabels = predict(mdl,X);

% 计算预测精度
accuracy = sum(predictedLabels == Y)/length(Y);
fprintf('Accuracy: %.2f%%\n',accuracy*100);

在这个示例中,我们使用了鸢尾花数据集(通过调用 load fisheriris 加载),并使用前两个特征(萼片宽度和萼片长度)作为输入。然后我们调用 fitcdiscr 函数来训练 LDA 模型,最后使用 predict 函数对新数据进行预测。

希望这个示例能够帮助您理解如何在 Matlab 中使用 LDA。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值